This page (revision-25) was last changed on 2021-11-08 09:09 by Murray Altheim

This page was created on 2019-12-22 08:01 by Murray Altheim

Only authorized users are allowed to rename pages.

Only authorized users are allowed to delete pages.

Page revision history

Version Date Modified Size Author Changes ... Change note
25 2021-11-08 09:09 8 KB Murray Altheim to previous
24 2021-06-24 22:52 8 KB Murray Altheim to previous | to last
23 2021-01-23 22:25 8 KB Murray Altheim to previous | to last
22 2020-09-27 01:11 8 KB Murray Altheim to previous | to last
21 2020-09-27 01:11 8 KB Murray Altheim to previous | to last

Page References

Incoming links Outgoing links

Version management

Difference between version and

At line 11 removed one line
On a typical robot with a motor on the left and a motor on the right side, to go forward one motor will be going clockwise, the other motor counter-clockwise. It's entirely typical of DC brushed motors to have a difference in performance in each direction, so it's entirely typical that such a robot will not run in a straight line. So having motor encoders and a PID controller is __exactly__ how one fixes this problem.
At line 13 removed 3 lines
See: [PID Rug Bump Challenge|PIDRugBumpChallenge], [Robot Chassis Dynamometer|RobotChassisDynamometer]
At line 32 changed 2 lines
The more I read about PID controllers the more I found that tuning the control terms is considered something of a black art. There are a number of constants in the formula, and tweaking them is done by trial and error, in other words: guessing. I did
learn one rule of thumb for a PD controller: start at three zeros, then turn up the P until it oscillates, then back off to half that value. Then do the same thing with D.
The more I read about PID controllers the more I found that tuning the Integral and Derivative control terms is considered something of a black art. There are a number of constants in the formula, and tweaking them is done by trial and error, in other words: guessing.
At line 53 removed one line
* __[PID Controller|https://en.wikipedia.org/wiki/PID_controller]__ from Wikipedia (note the animation of adjusting P,I,D values in the ''Manual tuning'' section)