This page (revision-54) was last changed on 2021-10-02 05:56 by Murray Altheim

This page was created on 2021-03-29 18:18 by Murray Altheim

Only authorized users are allowed to rename pages.

Only authorized users are allowed to delete pages.

Page revision history

Version Date Modified Size Author Changes ... Change note
54 2021-10-02 05:56 20 KB Murray Altheim to previous
53 2021-10-02 05:54 20 KB Murray Altheim to previous | to last
52 2021-05-27 04:47 20 KB Murray Altheim to previous | to last
51 2021-05-16 07:55 20 KB Murray Altheim to previous | to last
50 2021-05-16 07:31 20 KB Murray Altheim to previous | to last
49 2021-05-16 06:23 20 KB Murray Altheim to previous | to last
48 2021-04-19 11:21 20 KB Murray Altheim to previous | to last
47 2021-04-10 12:46 20 KB Murray Altheim to previous | to last
46 2021-04-10 12:43 19 KB Murray Altheim to previous | to last
45 2021-04-10 12:37 19 KB Murray Altheim to previous | to last
44 2021-04-10 12:35 19 KB Murray Altheim to previous | to last
43 2021-04-10 12:31 18 KB Murray Altheim to previous | to last
42 2021-04-10 12:29 18 KB Murray Altheim to previous | to last
41 2021-04-10 12:26 18 KB Murray Altheim to previous | to last

Page References

Incoming links Outgoing links

Version management

Difference between version and

At line 1 changed one line
[{Image src='attach/MarsRover/Open_Source_Rover_Patch.jpg' link='attach/MarsRover/Open_Source_Rover_Patch.jpg' caption='Open Source Rover Patch (click to enlarge)' width='200' align='right' class='imgFloatRight'}]
I've been collecting ideas for building a __[Mars Rover]__. This can easily cost a few thousand dollars and I'm not quite sure yet that I'm willing to fund such a venture, but it's fun to dream (and plan).
At line 3 removed 3 lines
I've been collecting ideas for building a Mars Rover. This can easily cost a few thousand dollars so I'm not quite sure
I'm willing to fund such a venture, but it's fun to dream (and plan).
At line 5 added one line
I recently came upon a JPL paper that goes into quite a lot of detail about the software controllign the Mars Exploration Rovers (MER), Spirit and Opportunity*. These were the two rovers that landed on Mars in 2004 and ran until 2010 and 2018 (resp.), a very long time past their planned mission of 90 days. This is probably the most detailed description I've found of a NASA rover's software.
At line 9 changed one line
!!! Design Notes
* ''[The Mars Exploration Rover Surface Mobility Flight Software: Driving Ambition|https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/biesiadecki_maimone06.pdf]'' \\ Jeffrey J. Biesiadecki and Mark W. Maimone, Jet Propulsion Laboratory, Pasadena, CA USA \\
[https://trs.jpl.nasa.gov/bitstream/handle/2014/40221/06-0060.pdf] (alternate link) \\
[https://ieeexplore.ieee.org/document/1655723] (if you are an IEEE member)
The paper's abstract is:
%%blockquote
In this paper we describe the software that has driven these rovers
more than a combined 11,000 meters over the Martian surface,
including its design and implementation, and summarize current
mobility performance results from Mars.
%%
__ Contents __
# Introduction
# MER Flight Software Architecture
# Mobility Manager Software
# Low-Level Driving
# Autonomous Driving
#* Primary Autonomous Capabilities
#* Terrain Assessment Overview
#* Robust Stereo Image Processing
#* Terrain Assessment
Another related document from the same team is Chapter 3 of "Intelligence
for Space Robotics":
* ''Surface Navigation and Mobility Intelligence on the Mars Exploration Rovers'', \\ Mark Maimone, Jeffrey Biesiadecki, Edward Tunstel, Yang Cheng, Chris Leger, NASA Jet Propulsion Laboratory, USA \\ [https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/05_Chapter3_final.pdf]
This also goes into the mechanics of the rocker-bogie suspension, use of sensors, basic mobility and control modes, autonomous navigation, path selection, etc.
If one were to use a stereo camera like the [RealSense T265|RealSenseT265] (rather than motor encoders) for odometry, here's a paper by, again, some of the same authors:
At line 40 added 21 lines
* ''[Two Years of Visual Odometry on the Mars Exploration Rovers|https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20184]'' \\ Mark Maimone, Yang Cheng, and Larry Matthies, Field Report, \\ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
Admittedly, that one is way over my head, but interesting.
An easier read is:
* [The Mars Robot Making Decisions on Its Own|https://www.theatlantic.com/technology/archive/2017/06/mars-curiosity-rover/531339/] \\ Thanks to artificial-intelligence software, the Curiosity rover can target rocks without human input. \\
[Marina Koren|https://www.theatlantic.com/author/marina-koren/], ''The Atlantic'', 24 June 2017
!!! Design Notes
[{Image src='attach/MarsRover/Open_Source_Rover_Patch.jpg' link='attach/MarsRover/Open_Source_Rover_Patch.jpg' caption='Open Source Rover Patch (click to enlarge)' width='120' align='right' class='imgFloatRight'}]
%%information
One thing that __almost__ goes without saying: the vast majority of the hobbyist Mars Rovers I've found are, despite being very complicated and often expensive mechanisms, they are almost without fail toys, [remote-controlled vehicles|RemoteControlledVehicle], and only rarely qualify as __[Telerobotics]__. Very few have operational sensors, and so far (I'm trying to think...) none of them I've seen are __autonomous robots__, or even semi-autonomous. Put it this way, if you've built an autonomous Mars rover, contact me and I'll put a link or a description or a page up about it.
%%
At line 13 changed one line
There's a huge impact on ground clearance if your motors are down there banging into rocks and such. The difficulty seems to be locating some suitably deep wheels. I can't imagine simply 3D printing them, as plastic wheels wouldn't last very long on rocks or concrete. I want a robot that can ''actually roam outdoors''. Also, unless the motors have durable ball bearings protecting the shafts, there needs to be some significant insulation between the motor shaft and the shocks that the wheels will create as they go over rough surfaces. Unless the robot is only going to run indoors, and then what's the point?!
I'm likely to try to build a rover a bit smaller than some I've seen on the Web — but not toy size — something using the same motor controllers I've used on my other robots, maybe 22mm or 25mm diameter motors with stall currents around 5 amps. The next step up from there and we're talking much larger motors, beefier controllers, larger batteries, etc. ''Too large'', especially for my budget.
At line 15 changed one line
[{Image src='attach/MarsRover/km01-design.png' link='attach/MarsRover/km01-design.png' caption='Preliminary Desing (click to enlarge)' width='300' align='right' class='imgFloatRight'}]
[{Image src='attach/MarsRover/km01-design.png' link='attach/MarsRover/km01-design.png' caption='Preliminary Desing (click to enlarge)' width='300' align='left' class='imgFloatLeft'}]
At line 67 added 2 lines
There's a huge impact on ground clearance if your motors are down there banging into rocks and such. The difficulty seems to be locating some suitably deep wheels. I can't imagine simply 3D printing them, as plastic wheels wouldn't last very long on rocks or concrete. I want a robot that can ''actually roam outdoors''. Also, unless the motors have durable ball bearings protecting the shafts, there needs to be some significant insulation between the motor shaft and the shocks that the wheels will create as they go over rough surfaces. Unless the robot is only going to run indoors, and then what's the point?!
At line 73 added 4 lines
\\
----
At line 99 added one line
At line 45 changed 2 lines
I've analysed the various options but am not convinced of a suitable set of components, so I've ordered
the parts for __1/6th of the drive system__: i.e., one motor, several wheel/tire options, a steering servo with mount, a bearing assembly for a rocker arm, and an assortment of possible structural hardware to put it all together. The shipping charge fo rth order was US$120. Ouch. I'll probably blog about things when the parts come in and I've had some time to play.
I've analysed the various options but am not convinced of a suitable set of components, so I've ordered the parts for __1/6th of the drive system__: i.e., one motor, several wheel/tire options, a __ServoBlock__ (a steering servo with mounting brackets), a bearing assembly for a rocker arm, and an assortment of possible structural hardware to put it all together. The ''shipping charge'' for the order was US$120. Ouch. I'll probably blog about things when the parts come in and I've had some time to play.
[{Image src='attach/MarsRover/servoblock_on_servo.jpg' link='attach/MarsRover/servoblock_on_servo.jpg' caption='ServoBlock (click to enlarge)' width='200' align='left' class='imgFloatLeft'}]
At line 48 removed one line
[{Image src='attach/MarsRover/osepp-tank-wheel.jpg' link='attach/MarsRover/osepp-tank-wheel.jpg' caption='A "Tank Wheel" (click to enlarge)' width='300' align='right' class='imgFloatRight'}]
At line 106 added one line
At line 51 changed one line
At line 111 added 2 lines
[{Image src='attach/MarsRover/osepp-tank-wheel.jpg' link='attach/MarsRover/osepp-tank-wheel.jpg' caption='A "Tank Wheel" (click to enlarge)' width='300' align='right' class='imgFloatRight'}]
At line 56 removed 2 lines
* [Replica Mars Rover Curiosity outside the lab... exploring the real world...|https://youtu.be/rZESgtjL0B0] YouTube video of scale model of NASA Mars Rover using ServoCity Actobotics parts, Pololu motors, etc. Built by [Carlos Sicilia Til|https://www.youtube.com/channel/UCIgnjQmL78DlHMuank2THLg] who indicates his servos as: 4kg.cm wheel servo. Arm servos: 25kg.cm at shoulder, 4kg.cm at elbow and 1.5kg.cm at tool holder.
At line 96 changed one line
| 2 | 12V max CXT® Power Source w/ USB port (YL000000003) | $95.00 | $190.00 | | Toolshed Petone | [https://www.makitatools.com/products/details/YL00000003]
| 2 | 12V max CXT® Power Source w/ USB port (YL00000003) | $95.00 | $190.00 | | Toolshed Petone | [https://www.makitatools.com/products/details/YL00000003]
At line 165 added 5 lines
* [Mars Exploration Rover|https://en.wikipedia.org/wiki/Mars_Exploration_Rover] on Wikipedia
* [Sojourner Project Home Page|https://mars.nasa.gov/MPF/rover/sojourner.html] (~1996, JPL)
** [A Description of the Rover Sojourner|https://mars.nasa.gov/MPF/rover/descrip.html]
** [Rover Telecommunications Photo Gallery|https://mars.nasa.gov/MPF/rovercom/pix.html]
** [Mars Pathfinder Microrover Publications|https://mars.nasa.gov/MPF/roverctrlnav/publications.html]
At line 173 added 2 lines
* [In-situ Exploration and Sample Return: \\ Autonomous Planetary Mobility|https://mars.nasa.gov/mer/mission/technology/autonomous-planetary-mobility/], NASA
* [The Mars Exploration Rover surface mobility flight software driving ambition|https://www.semanticscholar.org/paper/The-Mars-Exploration-Rover-surface-mobility-flight-Biesiadecki-Maimone/e84d3a62d4de4c59b8a2525bc797e02665055728?p2df], JPL paper ([alternative link|https://www-robotics.jpl.nasa.gov/publications/Mark_Maimone/biesiadecki_maimone06.pdf])
At line 116 removed one line
* [Give your Robot the Mobility Control of a real Mars Rover: Part 4|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-4]
At line 118 changed one line
* [D&J|http://www.dnj.co.kr/?lang=en], a Korean company that sells a lot of fancy motors
* ''Give your Robot the Mobility Control of a real Mars Rover'', by Bill Marshall (DesignSpark):
** [Part 1|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-1], covers the theory behind PID control
** [Part 2|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-2|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-2], discusses the practical issues of odometry and using PID for precise mobile robot navigation
** [Part 3|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-3], look at some more code and other features of practical rover design
** [Part 4|https://www.rs-online.com/designspark/give-your-robot-the-mobility-control-of-a-real-mars-rover-part-4], Wheeled robots take many forms: 2-, 3-, 4-, 6- or 8-wheels, with and without suspension. The type of terrain the robot will move over largely determines the choice: a nice, smooth warehouse floor or a rough, unpredictable Martian surface?
At line 190 added 3 lines
[{Image src='https://raw.githubusercontent.com/jakkra/Mars-Rover/master/.github/driving.gif' link='https://github.com/jakkra/Mars-Rover/blob/master/.github/driving.gif' caption='Mars Rover by Jakob Krantz' width='300' align='right' class='imgFloatRight'}]
* [Replica Mars Rover Curiosity outside the lab... exploring the real world...|https://youtu.be/rZESgtjL0B0] YouTube video of scale model of NASA Mars Rover using ServoCity Actobotics parts, Pololu motors, etc. Built by [Carlos Sicilia Til|https://www.youtube.com/channel/UCIgnjQmL78DlHMuank2THLg] who indicates his servos as: 4kg.cm wheel servo. Arm servos: 25kg.cm at shoulder, 4kg.cm at elbow and 1.5kg.cm at tool holder.
At line 198 added one line
* [The Open Source Mars Rover, One Year Later|https://hackaday.com/2020/07/02/the-open-source-mars-rover-one-year-later/] by Jakob Krantz (on Hackaday), uses LoRa to communicate with the (human) controller, with [open source code|https://github.com/jakkra/Mars-Rover] on github; he uses a separate 12v-5v switching voltage regulator for each servo (!) and outlines the hardware in more detail on the github page
At line 200 added one line
For not only a Mars Rover but other designs, a bit old (circa 2013) but interesting, see the [Actobot Blog|https://beatty-robotics.com/actobot/] from __[Beatty Robotics|https://beatty-robotics.com/]__. Their gallery alone is worth the visit.
At line 202 added one line