

PAA5100JE-Q: Optical Tracking Chip

Product Datasheet

General Description

The PAA5100JE-Q is PixArt Imaging's latest optical navigation chip designed to enable navigation with working range of 15 mm to 35 mm over various surfaces. It is housed in a 28-pin land-grid-array (LGA) package that provides X-Y motion information. Aided by external illumination, it is most suitable for motion and surface detection in robot application.

Key Features

- Working range of 15 to 35 mm
- No lens focusing required during lens mounting process
- Power consumption of 6 mA typical @ run mode (chip only)
- 16-bits motion data registers
- Motion detect pin output
- Internal oscillator no clock input needed

Applications

Devices that require near field motion detection, e.g
Robot Cleaners

Key Parameters

Parameter	Value
Supply Voltage (V)	V _{DD} : 1.8 – 2.1
	V _{DDIO} : 1.8 – 3.6
Working Range (mm)	15 to 35 mm
Frame Rate (fps)	242
Interface	4-Wire SPI @ 2 MHz
Package Type	28-pin LGA Package with
	L214-ZSZ Lens Assembly:
	6 x 6 x 3.08 mm

Ordering Information

Part Number	Package Type
PAA5100JE-Q	28-pin LGA Package
L214-ZSZ	Lens Assembly

For any additional inquiries, please contact us at http://www.pixart.com/contact.asp

1.0 Signal Description

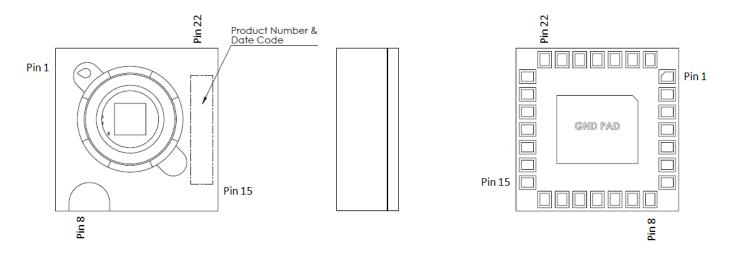


Figure 1. Pin Configuration

Table 1. Signal Pins Description

Pin No.	Signal Name	Туре	Description
Function	al Group:	Power Supplies	
2	VDD	Power	Input power supply
3	VDDIO	Power	I/O reference voltage
4	VREG	Power	Internal voltage output
1	GND	Ground	Ground
21	GND	Ground	Ground
Function	al Group:	Control Interface	
16	MOSI	Input	Serial data input
17	SCLK	Input	Serial data clock
18	MISO	Output	Serial data output
19	NCS	Input	Chip select
Function	al Group:	Functional I/O	
7	NRESET	Input	Hardware reset (Active low)
15	MOTION	Output	Motion interrupt (Active low)
20	LED_N	Input	External LED control pin (Active low)
Function	al Group:	Special Function F	Pin Pin
5 - 6	NC	NC	No connection (float)
8 - 14	NC	NC	No connection (float)
22 - 28	NC	NC	No connection (float)
29*	GND PAD	Ground Pad	Bottom of LGA package must be connected to circuit ground

Version 1.00 | 25 July 2018

2.0 Operating Specifications

2.1 Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Lead-Free Solder Temperature	T _{SOLDER}		260	°C	
	V_{DD}	-0.5	2.1	V	
Supply Voltage	V_{DDIO}	-0.5	3.6	V	
Input Voltage	V _{IN}	-0.5	3.6	V	All I/O pins
ESD	ESD _{HBM}		2	kV	All pins (Human Body Model)

Notes:

- 1. Maximum Ratings are those values beyond which damage to the device may occur.
- 2. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
- 3. Functional operation should be restricted to the Recommended Operating Conditions.

2.2 Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	0		60	°C	
	V_{DD}	1.8	2.0	2.1	V	Including supply noise
Dower Supply Voltage	V_{DDIO}	1.8	2.0	3.6	V	$V_{DDIO} \ge V_{DD}$
Power Supply Voltage	V_{XLED}			3.6	V	$V_{DDIO} \ge V_{XLED}$ Min V_{XLED} to ensure min I_{XLED} of 15 mA
LED Supply Current	I _{XLED}	15			mA	Refer LED's datasheet for the max current rating
Power Supply Rise Time	t _{RT}	0.15		20	ms	0 to V _{DD} min
Supply Noise (Sinusoidal)	V_{NA}			100	mV_{p-p}	10 kHz – 75 MHz
Serial Port Clock Frequency	f_{SCLK}			2	MHz	50% duty cycle
Working Height	Z	15		35	mm	
Effective Viewing Angle	V_A		42		0	
Frame Rate	F_R		242		fps	
Speed	S		45		ips	At Z = 25mm @ Crimson Carpet, Grey Vinyl & Replicated Wood surfaces
Repeated Error	DE		0.4		%	At Z = 25mm up to 10 ips @ Crimson Carpet & Grey Vinyl & Replicated Wood surfaces
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8		%	At Z = 25mm up to 45 ips @ Crimson Carpet, Grey Vinyl & Replicated Wood surfaces		

Note: PixArt does not guarantee the performance of the system beyond the recommended operating condition limits.

The recommended external illumination to use with PAA5100JE is White LED with the part number LTW-216TS5. The datasheet for this LED is attached with this document.

Table 4. Characteristics of LTW-216TS5 at $T_A = 25$ °C

Description	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Dissipation				70	mW	
DC Forward Current				20	mA	
Peak Forward Current				100	mA	1/10 duty cycle, 0.1 ms pulse width
Reverse Voltage	V_R			5	V	
Reverse Current	I _R			10	uA	V _R = 5 V
Forward Voltage	V _F	2.65		3.20	V	$I_F = 5 \text{ mA}$

Note: Refer to LITE-ON's latest datasheet for up-to-date product characteristics.

2.3 DC Characteristics

Table 5. DC Electrical Specifications

Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Current	1		6		mA	Average current (chip only)
	I _{DD_RUN}		U		IIIA	No load on MISO, MOTION.
Power Down Current	I_{PD}		12		uA	
Input Low Voltage	V _{IL}			0.3*V _{DDIO}	V	SCLK, MOSI, NCS
Input High Voltage	V_{IH}	0.7*V _{DDIO}			V	SCLK, MOSI, NCS
Input Hysteresis	V_{I_HYS}		100		mV	SCLK, MOSI, NCS
Input Leakage Current			± 1	± 10	uA	$V_{in} = V_{DDIO}$ or OV,
input Leakage Current	I _{LEAK}		Ι1	I 10	uA	SCLK, MOSI, NCS
Output Low Voltage	V _{OL}			0.45	V	I _{OUT} = 1mA, MISO, MOTION
Output High Voltage	V_{OH}	V _{DDIO} - 0.45			V	I _{OUT} = -1mA, MISO, MOTION

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

2.4 AC Characteristics

Table 6. AC Electrical Specifications

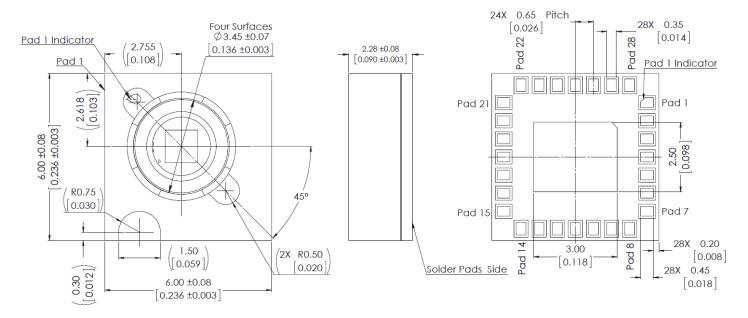
Parameters	Symbol	Min.	Тур.	Max.	Unit	Conditions
Motion Delay After Reset	t _{MOT-RST}	50			ms	From reset to valid motion, assuming motion is present
Shutdown	t _{STDWN}			500	us	From Shutdown mode active to low current
Wake from Shutdown	t _{WAKEUP}	50			ms	From Shutdown mode inactive to valid motion. Notes: A RESET must be asserted after a shutdown. Refer to section "Notes on Shutdown", also note t _{MOT-RST.}
MISO Rise Time	$t_{r\text{-MISO}}$		50		ns	C _L = 100pF
MISO Fall Time	t _{f-MISO}		50		ns	C _L = 100pF
MISO Delay After SCLK	t _{DLY-MISO}			120	ns	From SCLK falling edge to MISO data valid, no load conditions
MISO Hold Time	t _{hold-MISO}	200			ns	Data held until next falling SCLK edge
MOSI Hold Time	t _{hold-MOSI}	200			ns	Amount of time data is valid after SCLK rising edge
MOSI Setup Time	t _{setup-MOSI}	120			ns	From data valid to SCLK rising edge
SPI Time Between Write Commands	t _{sww}	10.5			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second data byte.
SPI Time Between Write And Read Commands	t _{swr}	6			μs	From rising SCLK for last bit of the first data byte, to rising SCLK for last bit of the second address byte.
SPI Time Between Read And Subsequent Commands	t _{srw} t _{srr}	1.5			μs	From rising SCLK for last bit of the first data byte, to falling SCLK for the first bit of the address byte of the next command.
SPI Read Address-Data Delay	t _{SRAD}	2			μs	From rising SCLK for last bit of the address byte, to falling SCLK for first bit of data being read.

Optical Tracking Chip

NCS Inactive After Motion Burst	t _{BEXIT}	500			ns	Minimum NCS inactive time after motion burst before next SPI usage	
NCS To SCLK Active	t _{NCS-SCLK}	120			ns	From last NCS falling edge to first SCLK rising edge	
SCLK To NCS Inactive (For Read Operation)	t _{sclk-NCs}	120			ns	From last SCLK rising edge to NCS rising edge, for valid MISO data transfer	
SCLK To NCS Inactive (For Write Operation)	t _{sclk-NCs}	2			μs	From last SCLK rising edge to NCS rising edge, for valid MOSI data transfer	
NCS To MISO High-Z	t _{NCS-MISO}			500	ns	From NCS rising edge to MISO high-Z state	
MOTION Rise Time	t _{r-MOTION}		50		ns	C _L = 100pF	
MOTION Fall Time	t _{f-MOTION}		50		ns	C _L = 100pF	
Input Capacitance	C_in		50		pF	SCLK, MOSI, NCS	
Load Capacitance	C_L			100	pF	MISO, MOTION	
Transient Comply Compart	I _{DDT}			70	mA	Max supply current during the supply ramp from 0V to V _{DD} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).	
Transient Supply Current	Гортіо			70	mA	Max supply current during the supply ramp from 0V to V _{DDIO} with min 150 us and max 20 ms rise time (does not include charging currents for bypass capacitors).	

Note: All the parameters are tested under operating conditions: $V_{DD} = 2.0V$, $V_{DDIO} = 2.0V$, $T_A = 25$ °C.

3.0 Mechanical Specifications

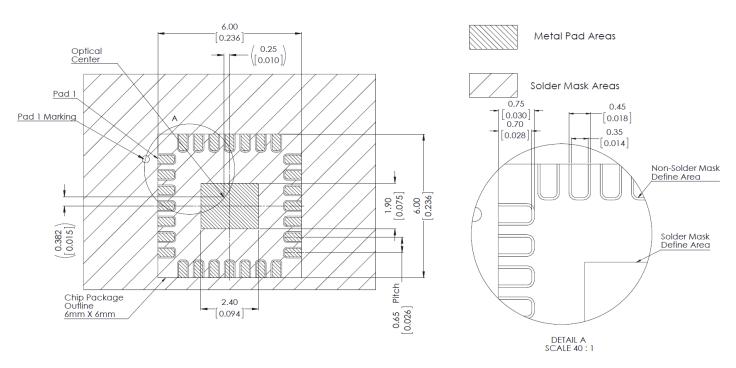

3.1 Package Marking

Refer Figure 1. Pin Configuration for the code marking location on the device package.

Table 7. Code Identification

Code	Marking	Description
Product Number	P5100	Part number label
		Y: Year
Lot Code	YWX	W: Week
		X: Reserved as PixArt reference

3.2 LGA Package Outline Drawing


Notes:

- 1. Dimensions in milimeters [Inches]
- 2. Coplanarity of pads: 0.08 mm
- 3. Non-cumulative pad pitch tolerance: ±0.10 mm
- 4. Maximum flash: ±0.20 mm
- 5. Dimensional tolerance: ±0.10 mm unless otherwise stated
- 6. Package Reference: 28L-6X6-LGA_009

CAUTION: It is advised that normal static discharge precautions be taken in handling and assembling of this component to prevent damage and/or degradation which may be induced by ESD.

Figure 2. LGA Package Outline Drawing

Version 1.00 | 25 July 2018

Note: Bottom center pad of LGA package must be connected to circuit ground.

Figure 3. Recommended PCB Layout

3.3 L214-ZSZ Lens Assembly Drawings

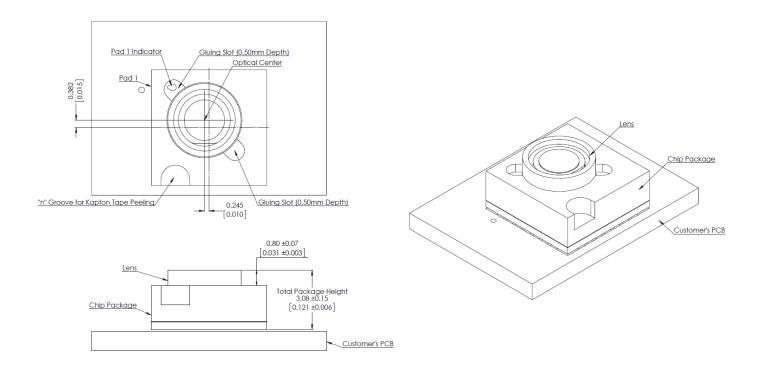


Figure 4. System Assembly View with L214-ZSZ

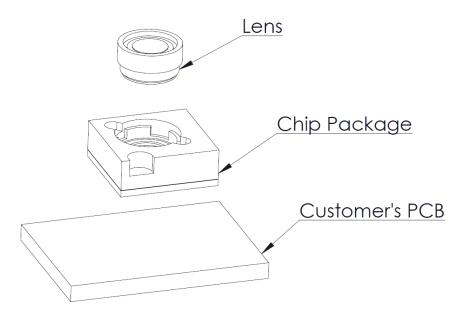


Figure 5. Exploded View of System Assembly (with L214-ZSZ)

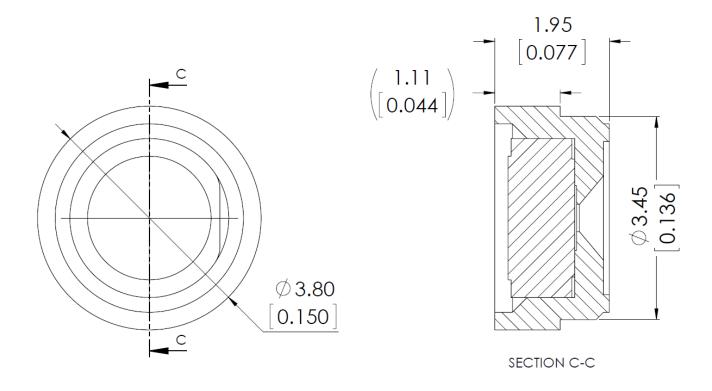
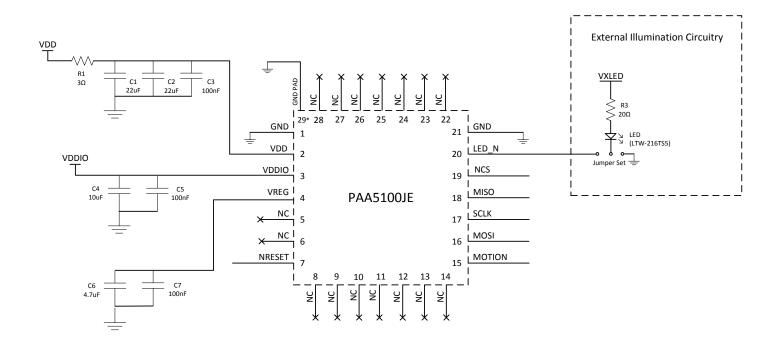



Figure 6. L214-ZSZ Lens Outline Drawing

4.0 System Level Description

4.1 Reference Schematic

Note:

- 1. All capacitors must be placed as close as possible to VDD, VDDIO & VREG pins.
- 2. Ceramic non-polarity capacitors are recommended.

<u>Note</u>: The jumper set on the external illumination circuitry provides flexibility to enable LED pulsing (via LED_N pin) or set the LED to DC mode. Please refer PAA5100's **User Guide for Evaluation Kit** for more details on how to use the jumper set on the PAA5100's Evaluation Kit.

Figure 7. PAA5100JE Reference Schematics with External Illumination

Optical Tracking Chip

5.0 Registers

5.1 Registers List

PAA5100JE registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Table 8. Register List

Address	Register Name	Access	Reset	Address	Register Name	Access	Reset
0x00	Product_ID	RO	0x49	0x0B	Shutter_Lower	RO	0x00
0x01	Revision_ID	RO	0x00	0x0C	Shutter_Upper	RO	0x00
0x02	Motion	R/W	0x00	0x15	Observation	R/W	0x00
0x03	Delta_X_L	RO	0x00	0x16	Motion_Burst	RO	0x00
0x04	Delta_X_H	RO	0x00	0x3A	Power_Up_Reset	WO	N/A
0x05	Delta_Y_L	RO	0x00	0x3B	Shutdown	WO	N/A
0x06	Delta_Y_H	RO	0x00	0x4E	Resolution	R/W	0x14
0x07	Squal	RO	0x00	0x58	RawData_Grab	R/W	0x00
0x08	RawData_Sum	RO	0x00	0x59	RawData_Grab_Status	RO	0x00
0x09	Maximum_RawData	RO	0x00	0x5B	Orientation	R/W	0xE0
0x0A	Minimum_RawData	RO	0x00	0x5F	Inverse_Product_ID	RO	0xB6