
D. Toal, C. Flanagan, C. Jones & B. Strunz.

SUBSUMPTION ARCHITECTURE FOR THE CONTROL OF ROBOTS

Daniel Toal1, Colin Flanagan1, Caimin Jones1 and Bob Strunz2.

1. Department of Electronic & Computer Engineering
2. Information Technology Department.
University of Limerick.

ABSTRACT

This paper describes ongoing investigations into the subsumption control of robots.
Subsumption architectures are a relatively new and simple approach to the control of robot systems.
The technique has been applied to the control of experimental mobile robots. Some of the potential
benefits of subsumption control over classical robot control techniques may prove useful in the
context of industrial robotics.

With subsumption control the robot is not controlled by a powerful reasoning system, but
rather by a set of simple processes. Each of these processes is designed to provide the robot with a
simple competence, for example, the ability to move away from an obstacle, to move around an area
in a random fashion, or to explore the robot's environment. The processes compete for control of
the robot at any given time, according to a varying priority scheme which is mediated, inter alia, by
external sensor input. The subsumption approach to robot control represents an interesting
alternative to classical artificial intelligence techniques, but remains unproven at this time.

A small mobile robot testbed has been built to investigate the feasibility of subsumption
control for robots. Three simple robot processes have been developed. These are a random motion
ability, a collision avoidance competence and a light seeking/ following ability.

Implementing primitive abilities such as a wandering behaviour and collision avoidance on
both mobile robots and robot arms has potential applications in industrial robotics. Using a
subsumption architecture could allow supervisory control to simply deal with task oriented decision
making leaving lower level reaction to unexpected or uncontrolled environment conditions to lower
level subsumption abilities.

1. INTRODUCTION

The real world is a complex, unstructured environment. Robots which are designed to
operate in the real world must be able to operate in situations which their designers only vaguely
envisaged and must have the ability to respond appropriately and quickly to unexpected events.

The "classical" artificial intelligence approach to interacting with an environment is to divide
the task into a number of major subsystems, typically: (1) perception, (2) world modelling, (3)
planning, (4) task execution, and (5) motor control. The perceptual subsystem handles the sensing
devices connected to the robot. The modelling subsystem converts the sensor input into a
description of where the robot is in relation to its internal model of the environment. The planning
subsystem attempts to work out how it will achieve its goals given the current world state. Task
execution breaks down the plan into detailed motion commands and finally the motor control causes
these commands to be executed.

D. Toal, C. Flanagan, C. Jones & B. Strunz.

Each of these subsystems is a complex program, and all have to work together perfectly for
the robot to operate at all. Some of the subsystems are extremely complex, e.g., the tasks of
perception and world modelling. Currently it is only possible to design such subsystems for
structured environments. The noisy and random environment of the real world overwhelms them. In
particular, as the complexity of the environment increases, the time needed to perceive, model and
plan about the world increases exponentially.

Figure 1. The Classical Artificial Intelligence Approach to Robot Control

This "classical" approach to robot control can be though of as a type of "vertical" division of
the control problem into functional units, each of which is responsible for a well-defined task which
is incapable of controlling the robot by itself. An important feature of this approach to robot control
is that the world perceived by the robot must be reduced to some sort of "symbolic" description
which can then be reasoned about by the planning subsystem using the classical artificial intelligence
approach based on state-space search and tree-pruning. However, this task of "grounding" symbols
in aspects of the real world has been, and remains, one of the most difficult and elusive goals of
artificial intelligence.

The subsumption approach to robot control is an alternative to the "classical" approach. It is a
minimalist approach. Instead of having a number of complex individual "vertical" tasks, the
subsumption approach tackles the control problem by thinking of it as a number of "horizontally"
arranged "layers". Each layer is designed to implement a "competence", i.e., the ability to display a
behaviour. Thus, each layer is fully capable of controlling the robot by itself, albeit in a possibly
simple-minded way.

Figure 2. Subsumption Architecture

Thus, each of the "horizontal layers" contains elements of all the "vertical" tasks found in a
classical system, usually implemented very simply. Each layer implements one behaviour, such as the
ability to move away from an obstacle, to move around an area in a random fashion, or to explore
the robot's environment. Thus, each process need not tackle the whole complex problem of
perceiving everything in its environment, or planning the whole business of getting the robot from A
to B, instead, it only performs that part of perception, planning, etc., which is appropriate to the
task it has to perform. As an example, a process which is designed to implement obstacle avoidance
need only be able to move away from an obstacle "noticed" by the robot's sensors.

D. Toal, C. Flanagan, C. Jones & B. Strunz.

A "classical" subsumption architecture, as described by Brooks [1] consists of a set of
complete robot control systems, each of which achieves a particular level of "competence". Brooks
has defined eight such layers of competence which he has labelled layers 0 to 7. Of these only layers
0 to 2 have been implemented on a robot:

The layer 0 control system provides the robot with the ability to avoid contact with objects
(whether these are moving or stationary).

The layer 1 system allows the robot to wander around aimlessly without hitting things.
Layer 2 endows the robot with the ability to "explore" the world by seeing places in the

distance using its sensor array and heading for them if they appear to be reachable.
Layers 3 through 7 add much more complex behaviour such as the ability to map the

environment, formulate plans about it and reason about the state of the world. The team headed by
Brooks has made some initial investigations of how such behaviours can be implemented in a robot,
but it is not yet clear how successful these will be in the long term.

Industrial robots usually operate in a more controlled environment than experimental mobile
robots. Careful design of the industrial robot's environment and design for manufacture of the piece
parts the robot works on greatly simplify the robot control problem. Working in a controlled
structured environment significantly reduces the perception and world modelling sub-elements of the
control task as described above. Never-the-less inclusion of advanced sensory systems such as
vision systems does imply an increase in the complexity of control in the areas of perception,
interpretation and world modelling. Also, flexibility is one of the most important attributes of
robotics over other forms of automation. This flexibility implies uncertainty in the robot
environment. For these reasons, subsumption control may therefore have a useful role to play in
certain applications of industrial robotics.

2. OUR AIMS

In this paper we describe work being undertaken at the University of Limerick on mobile
robots employing subsumption architectures. Our initial aim in this work was simply to develop a
robot equivalent in abilities to those discussed in Brook's early work. Initial work on the project,
including building a mobile robot hardware base and developing some primitive subsumption
processes on this robot is described by Flanagan et. al. [2]. Further work has been carried out on
the development, testing & integration of sensory sub-systems using ultrasonics and light seeking
arrays and implementing simple subsumption capabilities employing these sensors.

3. ROBOT DESIGN

For a detailed description of the mobile robot see Flanagan et. al, [2]. The robot was designed
primarily to perform simple motion tasks under the direct control of an on-board computer. The on
board computer receives motion commands from an external PC. Status and sensory information is
fed back to the PC. Design flexibility allows for easy modification and expansion

3.1 Physical Hardware
The robot has two independent drive wheels mounted beneath the base plate, one on either

side providing locomotion. Directional control is achieved by driving both wheels together, driving
one at a time or by driving them in opposite directions. The robot can thus drive in straight lines,
rotate on the spot, or turn with one wheel stationary. Move distance, speed and acceleration are
programmable.

Two 2", 2 phase standard hybrid stepper motors drive the wheels using a rubber belt and
pulley transmission system providing a 5:1 reduction ratio. The robot was designed to achieve a

D. Toal, C. Flanagan, C. Jones & B. Strunz.

target speed of 1 m / s and an acceleration rate of 1 m / s2. Both of these design targets were
exceeded.

Figure 3. The Robot

The robot has a simple collision detection system consisting of a ring connected to four micro
switches which are interfaced to the on-board controller. The robot also has a more sophisticated
collision detection and obstacle avoidance systems which employs ultra sonic transmitters and
detectors, This sub system is described in greater detail below.

3.2 Software - Robot Control
Robot control has been split into on-board low-level control and high-level control hosted on

an external PC. Simple software has been written on both the on-board controller and supervisory
PC. The onboard software includes motion primitives, input / output & sensory routines and serial
communications software. Implementation of the sub-sumption control uses a high level command
language run on the PC, which is at an early stage of development.

The above approach of separating the low level on-board control primitives and the higher
level task oriented control is very similar to that used by Brooks in designing ALVINN, an early
robot built at the MIT Mobot lab. It has the advantage that the subsumption control algorithms are
easy to change and can run on a powerful machine. Ideally, of course, the entire control system
would be hosted on the robot, along with all the electronics and the power supply. We deemed this
impractical at this stage and regarded flexibility as being of primary importance.

3.3 Low-Level Control (on-board)
The on-board controller consists of a Z80 based main board, a locomotion interface card, and

two power driver boards for the motors. All main board control, address and data lines are
available to other robot boards via a back plane. At present the main board has 16Kbytes of on
board memory which is expandable to 64K. All necessary control and enable signals for the extra
memory chips are present on the board.

Stepper motors have limited start /stop regions such that for most working speeds it is
necessary to start the motor at a low speed and accelerate up to the desired speed. It is also
necessary to decelerate the motor back to a low speed before stopping to avoid overshoot. This

D. Toal, C. Flanagan, C. Jones & B. Strunz.

speed profiling task is implemented in digital hardware on the robot, freeing up the CPU for other
tasks and for future expansion. The locomotion board provides hardware control of move distance,
final speed and acceleration / deceleration of the stepper motors beyond motor start / stop speed
limits using a buffered clock arrangement.

To realise a movement the Z80 simply transfers the necessary speed and distance constants to
the locomotion board. The acceleration rate and deceleration provided by the buffered clock are
also programmable from the CPU. Once set up, however, the acceleration rate is rarely changed
unless required by the robot environment. An example would be if the robot encounters an incline.
A buffered clock monitoring capability has been included such that the CPU can interrogate for
current speed and move distance. This feature is important under collision conditions for
monitoring current location.

The CPU can enable both driver boards such that the robot moves in a straight line. Each
motor can be reversed by reversing the phase sequences applied to the motors. This allows the
robot to turn on the spot, either clockwise or anti-clockwise, again under CPU control. By
disabling one drive the robot can turn, with one wheel stationary. Combinations of straight line,
turning and rotating motions will allow the robot to be controlled to negotiate its environment.
Differential motor speed control, allowing the robot follow an arc, has not yet been provided. This
could however be provided without much difficulty. The currently implemented manoeuvring
capabilities are sufficient to begin.

Motor driver chips and other power electronics are mounted on separate boards in order to
separate the high power analogue circuitry from the microprocessor and logic boards. Full stepping
of the motors with both phases on is the stepping mode used as it gives the greatest torque output.
The 200 steps per revolution were more than adequate. 1 mm of travel corresponds to 5.3 motor
steps. Motor control was realised with SGS-Thomson L297 and L298 controller and driver chip
pairs.

A bumper ring connected to four micro switches is used for simple collision detection.
Depending on the combination of switches that are closed the CPU can determine the sector or
quadrant of collision. A /COLLISION line is used to stop the motors, via hardware, immediately a
switch is closed. This feature can be disabled from software with an /OVERRIDE output. This
feature can enable the robot to push its way through light obstacles. Ultrasonic obstacle detection
and the light seeking capability are described below in section 4.

3.4 Robot to PC Interface
Communication between the robot and the PC running the high-level control software is via

an RS232C link. This low bandwidth link is adequate for sending simple commands to the robot and
receiving low-bandwidth data from it. Currently the robot only provides simple obstacle detection,
using ultra sonics and micro-switches, and the light sensor differential signal. These represent a low
bandwidth input data stream to the PC. When the robot is extended to include higher-bandwidth
data sources, these will require their own links back to the PC. This is again a conscious design
decision. The Z80 has enough to do controlling the motors. Higher level sensory capabilities will
ride on the robot as self contained systems and will not interfere with the basic control. This is a
good example of subsumption in practice.

4. ULTRA-SONIC DETECTION AND LIGHT SEEKING ABILITIES

An ultrasonic ranging / obstacle avoidance system and a light seeking ability have been
designed and implemented on the mobile robot and are used within certain subsumption processes.

D. Toal, C. Flanagan, C. Jones & B. Strunz.

4.1 Ultra-Sonic Detection
This system enables the detection of obstacles in the vacinity of the robot prior to collision.
However the collision detection ring still acts as a fail safe back-up system to the ultrasonics. Thus
far the ultra-sonic 'vision' capability has been implemented as a look ahead feature with transmitters
and receivers covering the area directly in front of the robot. This 'vision' capability can easily be
expanded to include lateral and reverse vision although this will be done with less coverage and
definition.

Two techniques were researched with regard to ultrasonic detection. A pulsed 'time of flight'
echo system similar in operation to radar systems was successfully developed and gives information
relating to absence / presence of an obstacle and also obstacle range information. Velocity of
obstacles relative to the motion of the robot can easily be determined by differentiating the range
values or signal.

A second technique was investigated but has not yet yielded a reliable solution. If the
intensity of the ultrasonic echo can be measured it can usefully be used to generate priority of
required response information. The intensity of reflected energy from a target/obstacle falls off with
R4 (R - range). Put another way, if the robot is approaching an obstacle or if a moving 'obstacle' is
approaching the robot, the intensity signal from the ultra-sonic receiver will squeal as the range
decreases. Thus the rate of change of the intensity signal can be used as a powerful priority
measure. The rate of change of intensity is expected to give a better warning system than simply
measuring the intensity of reflected energy. Intensity of reflective energy varies greatly with many
factors, e.g. material of target, surface finish, dimensions of target, etc.

4.2 Light Seeking Ability
A light seeking capability has been implemented on the robot using an array of light sensitive

resistors as detectors combined with signal conditioning and amplification. As currently configured
this sensory system generates signals which are used to determine the direction of a light source
relative to the direction in which the robot is facing. The light seeking control process implemented
on the robot simply drives the robot to align it with the light source.

5. HIGH-LEVEL (SUBSUMPTION) CONTROL

The high-level control of the robot is vested in a "subsumption-like" software architecture
running on a host PC. Our implementation of subsumption differs somewhat from that proposed in
the original literature.

Brooks originally proposed that a subsumption architecture be comprised of a hierarchy of
controller layers where each layer is capable of overriding all inferior layers at any time and taking
control of the robot for as long as it wishes. It then relinquishes control to whatever inferior layer
was previously in command of the robot. The layer which "subsumes" control of the robot at any
point need have no knowledge of what is currently controlling the robot at that point, and similarly,
the "usurped" module need have no information about the "subsumer".

We propose two weaknesses with this scheme:
(i) In practice it has been found that this very loose coupling between layers is not

sustainable. Layers often need to pass information back and forth, but "pure" subsumption control
only allows this on an ad-hoc basis. We feel that a more structured approach is needed here.

(ii) The division between layers is quite rigid. Thus, if a layer 2 competence decides that it
wants to control the robot, a layer 0 competence cannot resist it. This is potentially hazardous if the
layer 0 competence has abilities that the layer 2 competence neglects. If layer 2 does not understand
the behaviour required to retreat in front of a charging bull, but layer 0 does, layer 0 cannot stop
disaster from occurring! This leads to the requirement that each layer implement the full competence
of all lower layers in addition to its own tasks. We feel that such an approach is wasteful of

D. Toal, C. Flanagan, C. Jones & B. Strunz.

resources. Yet the typical solution adopted by the Mobot lab machines is for higher layers to "grope
around" in the internals of their subordinates. This is also undesirable from a software engineering
standpoint. The difficulty seems to arise from the rigid and early decision about what competencies
belong "above" others.

Figure 4. Brook's Subsumption Architecture

Our alternative approach is based upon the following ideas:
(i) We substitute a set of independent processes for the layers of the Brooks architecture.

Each process is responsible for implementing a task which represents some behaviour of the sort
handled by a layer in the Brooks architecture, or possibly a simpler task.

(ii) We maintain a global "blackboard" data structure where processes may place information
they consider "interesting" and read the postings placed by other processes. This area is quite
unstructured, processes may place whatever they like there (with obvious limitations imposed by
memory size, etc.). The only real requirement of the area is that every piece of data be clearly
stamped to reveal its originator and time of generation.

(iii) We allow the processes to "compete" for control of the robot at any instant, according
to a varying priority scheme. Urgent events in the external world (e.g., sensor input telling the robot
that it has just crashed into a wall) generate high priorities for processes associated with them, such
as the obstacle avoidance task. We also propose that priorities be time varying, so no one process
has a chance to "hog" control of the robot. We expect the robot to demonstrate an "attention span"
due to decaying priorities.

Figure 5. Modified Subsumption Architecture

D. Toal, C. Flanagan, C. Jones & B. Strunz.

This scheme has potentially two weaknesses in comparison with the Brooks approach. It relies
on a global data structure and it requires a centralised arbitrator to decide which process controls
the machine at a given moment. We believe that neither of these is a serious weakness, but only
experiment can confirm or deny this hypothesis. On the other hand, we believe that the flexible
priority scheme discussed here is an advance on the basic Brooks model. It is interesting to note that
a similar idea has appeared in the more recent work from the Mobot laboratory. In any event, we
intend to contrast the behaviour of the robot using our approach and Brooks' to see what the
relative advantages of the two are in practice.

In the Brooks architecture each layer is programmed as a set of asynchronous processes which
communicate via message passing. These processes are extremely simple and are described as
augmented finite state machines (AFSMs). A special language (the "behaviour language", a subset
of Lisp) has been defined by the Mobot lab researchers in order to design these AFSMs, and
compilers have been written to convert behaviour language descriptions to networks of AFSMs in
various machine codes. We intend to work at a different level of detail and treat each of our
competing processes as a unit instead of as a network of much simpler entities.

6. POSSIBLE AREAS OF APPLICATION OF SUBSUMPTION IN MANUFACTURING

Current industrial robots are designed for well structured environments. The noisy and
random environment of the real world unless properly controlled would overwhelm them.
However, application flexibility is one of the most important attributes of robotics over other forms
of industrial automation. This flexibility implies some uncertainty in the robot environment.
Subsumption control may therefore have a useful role to play in certain applications of industrial
robotics.

Subsumption, as described above, could prove useful in the control of AGV's. An AGV that
encounters an obstacle may well bypass the hold-up through subsumption. Alternatively, an AGV
could have a low priority cleaning process which is enabled whenever the more common transport
tasks are unwanted A robot arm could be programmed off-line to perform a certain function
without regard to crashing into hardware, parts and fixtures in a cell. If such a robot arm was
equipped with sufficient sensors, path modification for collision avoidance could be achieved during
a first or dry run using subsumption. Modified paths could be recorded and incorporated in future
program runs.

Such scenarios would simplify the off-line task-level programming of robots leaving
unforeseen and varying implementation details and reaction to unexpected or uncontrolled
environment conditions to the run-time controller and subsumption abilities.

7. RESULTS & CONCLUSIONS

At this point in time the robot has been built and tested. Construction of the initial version of
the PC-hosted control software is well underway. The project is in its early stages, so portions of
the subsumption mechanism have been implemented and tested at the time of writing, but this
testing has not been rigorous.

We have thus far implemented a basic controller containing a number of process capabilities ;-
(i) a process capable of avoiding obstacles employing ultra-sonic sensors with a micro-switch
detection ring as back up, (ii) a process which can wander around aimlessly (as a sort of
"background" activity when the robot is doing nothing else), (iii) a "path recording" process which
remembers the last 20 moves made by the robot and will allow it to back out of a blind alley when
none of the other processes are doing anything constructive, and (iv) a light seeking or following

D. Toal, C. Flanagan, C. Jones & B. Strunz.

process which enables the robot to follow a stationary or moving light or the robot could equally
follow a bright stripe painted on the floor.

We have operated the robot with all four of these processes implemented. However further
work is required in the area of prioritising of processes based on sensory input and decaying of
priorities with time in order that the robot shows a stable behaviour or 'personality' as distinct from a
skittish behaviour pattern.

As a simple example of subsumption in operation, depending on process priorities, the robot
may follow a moving light until it encounters an obstacle. Due to sensory input the process
priorities change and the obstacle avoidance process takes over, followed possibly by the wandering
process until a point where the robot finds the light again. Such behaviour can be seen to display a
certain primitive intelligence with some similarities to that of a bat or flying insect that feeds on glow
worms, if indeed bats or other insects do feed on such worms and are not deterred by their dinner
being lit. This question we will leave to the biologists.

As described above, subsumption could have possible application in manufacturing for both
robot arms and mobile robots or AGVs. Subsumption control can improve the versatility of robots
allowing them to operate in complex, unstructured environments. The task of perception and world
modelling can be simplified and focused as necessary for each primitive process capability. Off-line
programming could be simplified and proceed with out getting bogged down in kinematic modelling
of the robot and it's environment. Will it happen ?

References
1. Brooks, R.A., A robust layered control system for a mobile robot, IEEE Journal of Robotics

and Automation, RA-2, 1986, pp 14-23.
2.. Flanagan, C., Toal, D. and Strunz, R., Subsumption Control of a Mobile Robot, Proc.

Polymodel-16, Sunderland, 1995, pp 150-158.

Bibliography
1. Brooks, R.A., A robot that walks: emergent behaviour from a carefully evolved network,
 Neural Computation. 1(2): 1989, pp 253-262.
2. Ferrell, C., Robust agent control of an autonomous robot with many sensors and actuators,

MIT Artificial Intelligence Laboratory Technical Report 1443, 1993.
3. Brooks, R.A., Elephants don't play chess, Robotics and Autonomous Systems 6, 1990,

pp 3-15.
4. Brooks, R.A., Intelligence without reason, Proc. 1991 International Joint Conference on
 Artificial Intelligence, 1991, pp 569-595.
5. Brooks, R.A., Stein, L.A., Building brains for bodies. MIT Artificial Intelligence Laboratory

Memo 1439, 1993.
6. Brooks, R.A. The behaviour language: user's guide, MIT Artificial Intelligence Laboratory
 Memo 1227, 1990

