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A subsumption architecture for 
theorem proving? 

BY ALAN BUNDY 

Department of Artificial Intelligence, University of Edinburgh, 
80 South Bridge, Edinburgh, EHI 1HN, U.K. 

Brooks has criticized traditional approaches to artificial intelligence as too ineffi- 
cient. In particular, he has singled out techniques involving search as inadequate 
to achieve the fast reaction times required by robots and other AI products that 
need to work in the real world. Instead he proposes the subsumption architecture 
as an overall organizing principle. This consists of layers of behavioural modules, 
each of which is capable of carrying out a complete (usually simple) task. He has 
employed this architecture to build a series of simple mobile robots, but he claims 
that it is appropriate for all AI products. Brooks's proposal is usually seen as an 
example of nouvelle AI, in contrast to good old-fashioned AI (GOFAI). 

Automatic theorem proving is the archetypal example of GOFAI. The resolution 
theorem proving technique once served as the engine of AI. Of all areas of AI it 
seems the most difficult to implement using Brooks's ideas. It would thus serve 
as a keen test of Brooks's proposal to explore to what extent the task of theorem 
proving can be achieved by a subsumption architecture. 

Tactics are programs for guiding a theorem prover. They were introduced as 
an efficient alternative to search-based techniques. In this paper I compare recent 
work on tactic-based theorem proving with Brooks's proposals and show that, 
surprisingly, there is a similarity between them. It thus seems that the distinction 
between nouvelle AI and GOFAI is not so great as is sometimes claimed. However, 
this exercise also identifies some criticisms of Brooks's proposal. 

1. Intelligence without reason? 

Rodney Brooks has championed a new approach to robotics, which he calls 
behaviour-based (see, for example, Brooks 1991). John Hallam and Chris Mal- 
colm describe this approach in more detail elsewhere in this volume, so we will 
only summarize it here. Its key features are the following. 

Situatedness. The robot must operate in and on the real world. 
Embodiment. The robot must have sensors and actuators. 

Subsumption architecture. The robot must be organized as a network of mod- 
ules. Each of these modules is behavioural, i.e. it is capable of performing a whole 
robot behaviour, e.g. walking, grasping. This is in contrast to a functional mod- 
ule, where each module performs one part of a sequence of tasks, e.g. perceiving, 
planning, acting. Behavioural modules are organized into layers, but operate in- 
dependently and in parallel. Overall behaviour emerges from the combination of 
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the behaviours of the modules. The only interaction allowed is that higher-level 
modules may inhibit the action of lower-level ones. There is no hierarchical or- 
ganization, no message passing between modules and no central model of the 
world. 

Some critics have seen this as a promising approach to dealing with low-level 
robot control, but as inadequate in general. They advocate a hybrid approach in 
which behaviour-based and traditional robotics are combined (see, for example, 
Malcolm et al. 1989). Brooks repudiates this. For instance, in Brooks (1991, ? 6) 
he says 

I think that the new approach can be extended to cover the whole story, both with regards 
to building intelligent systems and to understanding human intelligence. 

In this paper we attempt to test this strong hypothesis. We have deliberately 
adopted the toughest test we could devise: to see whether Brooks's approach 
works on a task for which it seems least suited, namely mathematical theorem 
proving. We will see that some aspects of behavioural-based robotics are inher- 
ently unsuited, or irrelevant, to the theorem proving task. However, perhaps sur- 
prisingly, the essential idea of the subsumption architecture does seems to echo 
some current approaches to theorem proving, namely the use of tactics. 

2. Automatic theorem proving 

Work on automatic theorem proving goes back to the earliest days of artificial 
intelligence. A theorem prover for propositional logic was one of the first AI pro- 
grams (Newell et al. 1957). The roots of the field are in mathematical logic. Most 
early work was based on a theorem of the logician Herbrand, which implicitly 
defined a procedure for exhaustively searching for a proof. A sequence of systems 
implementing and refining this procedure (by Gilmore, Davis & Putnam, Prawitz, 
etc.) led to the resolution method (Robinson 1965) which then became the basis 
for most future work. Many of these early papers are reprinted in Siekmann & 
Wrightson (1983). 

Both resolution theorem proving and many of the alternative mechanisms can 
be seen as manipulating an initial conjecture by the application of rules of infer- 
ence. Each rule breaks the conjecture into one or more subgoals. Rules can then 
be applied to each of these subgoals to break them into further subgoals. The 
process ends when the conjecture is reduced to a collection of trivial subgoals, 
e.g. axioms of the mathematical theory. 

Several different rules may apply to each goal. To be sure of finding a proof 
it is necessary to try each of the alternative rules at some stage. This situation 
is illustrated in figure 1. Thus automatic theorem proving is a search problem. 
This is where the problems start. For non-trivial theorems the number of rule 
combinations which must be explored becomes astronomically large. Storing all 
the possibilities can easily exhaust the memory capacity of even the largest com- 
puters. Exploring all the possibilities can take more time than anybody is willing 
to wait. This phenomenon is the combinatorial explosion. 

Most work in automatic theorem proving has been directed to controlling the 
combinatorial explosion. 

(a) Resolution-based systems have been refined so that fewer rules apply to 
each goal or so that each rule application makes more progress. 
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Figure 1. Theorem proving as search. Search is represented as exploration of a tree with the root 
at the top and the leaves at the bottom. The root is labelled with the original conjecture. Each 
rule applying to this conjecture is represented as a circle connected to the conjecture node. Each 
of these rules gives rise to a (possibly empty) set of subgoals. Each subgoal is represented as 
a square connected to the rule. Further rules apply to each subgoal, creating further subgoals, 
etc. 

(b) Alternatives to resolution, requiring less search, have been invented, e.g. 
term rewriting (explained below). 

(c) Heuristics have been devised to select the most promising rule applications 
first or to decide that some rule applications should not be tried at all. 

(d) More efficient means of storing and applying rules have been devised so 
that the effect of the combinatorial explosion is reduced. 

(e) Interactive systems have been developed in which a human user helps to 
direct the search. 

Proving theorems in most areas of mathematics is a semi-decidable problem. 
This means that: if the conjecture is a theorem then a complete theorem prover 
will eventually find a proof (though this could take a very long time); if the 
conjecture is not a theorem then a complete theorem prover might never terminate 
in its fruitless search for a proof. It is possible to prove that this is the best that 
can be done in general. A few simple areas of mathematics are decidable. This 
means that a decision procedure can be built for them. Given any conjecture this 
procedure will eventually terminate and say whether or not the conjecture is a 
theorem. Unfortunately, many decision procedures are very inefficient, i.e. taking 
a time that is much worse than exponential in the size of the conjecture. Some 
work in automatic theorem proving has gone into improving the efficiency of these 
decision procedures. 

Techniques have been discovered which are incomplete (i.e. may not find a 

proof although one exists), but are efficient and which work in many situations 
of practical interest. An example is term rewriting. A mathematical theory is 
expressed as a set of equations, e.g. x + 0 = x. These equations are oriented to 
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form rewrite rules, i.e. they are given a direction from left to right or right to 
left, e.g. x + 0 -+ x, where the = sign is turned into the arrow to indicate the 
direction. If the left-hand side of a rule matches a subexpression of the conjecture 
then it is replaced by the right-hand side of the rule. To prove a conjecture it 
is exhaustively rewritten with these rules. It is often possible to show that this 
process will terminate and that when it does the final result will be trivially either 
true or false. 

Progress has been made since the 1950s. Some automatic provers can generate 
millions of goals in a feasible timescale and can find the proofs of open problems 
by exhaustive search (Wos 1993). However, these open problems are typically in 
new and obscure areas of mathematics, for which human mathematicians have not 
yet developed strong intuitions. Interactive systems have been used to prove some 
very hard theorems (Boyer & Yu 1992). However, these are typically in application 
areas, e.g. program verification, in which the proofs are straightforward, but long 
and complicated. Despite these advances, the totally automatic proof of hard 
mathematical theorems still seems a long way off. 

3. Criticisms of uniform proof procedures 

In the early days of artificial intelligence, automatic theorem proving promised 
to be a central engine of intelligent systems. Many AI problems (in robot planning, 
natural language understanding, visual perception, etc.) could be formulated as 
theorem proving in a theory of common sense knowledge. Theorem proving was 
a unifying factor in AI. 

High expectations ended in disappointment. Combinatorial explosion proved 
to be an obstacle, even in common sense reasoning. Theorem provers were far 
too slow. Many critics identified the uniform nature of resolution-like systems as 
the source of the problem. They proposed the use of inference mechanisms more 
closely tuned to their applications, i.e. containing features which would limit 
the amount of search to that strictly required. In expert systems, for instance, 
production rules were a popular choice. In natural language, semantic nets, frames 
and isa hierarchies were used for representing the meaning of utterances. In 
vision, constraint propagation was used for object recognition. In practice, these 
specialized inference mechanisms were often essentially similar to the uniform 
proof procedures they replaced, but more limited in the kinds of inference they 
could perform. 

Brooks's proposals can be seen as a continuation of this criticism. He character- 
izes search-based mechanisms as a dead-end in the progress of AI. For instance, 
in Brooks (1991, ?3.2) he says: 

In the early days of the formal discipline of Artificial Intelligence, search was adopted as 
a basic technology. It was easy to program on digital computers. It lead [sic] to reasoning 
systems which are not easy to shoe-horn into situated agents. 

So, in the 1970s, AI turned away from theorem proving mechanisms because of 
the problems of search. (In recent years, though, there has a been a reawakening 
interest in automatic theorem proving within AI as a result of the increasing 
use of logic for knowledge representation.) But proving theorems remains as a 
task performed by humans and requiring intelligence. Can AI emulate it, despite 
the problems caused by the combinatorial explosion? In particular, does Brooks's 
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proposal of behaviour-based robots suggest an alternative mechanism to uniform 
proof procedures? Put another way, can we prove theorems without search? 

4. Tactic-based theorem proving 

Divorced from AI, automatic theorem proving turned to computer program- 
ming as its main application area. Computer programming problems can be 
turned into theorem proving problems in the following way. 

1. A computer program can be viewed as a mathematical theory. In logic pro- 
gramming a computer program consists of a set of logical formulae which are the 
axioms of a logical theory. In functional programming a computer program is a 
set of equations which are the axioms of an algebra. 

2. A simple automatic theorem prover can be used to run such a computer 
program. A resolution-based theorem prover can run a logic program. A rewrite- 
rule-based theorem prover can run a functional program. 

3. Automatic theorem provers can also be used to reason about computer pro- 
grams. A program can be proved to meet a specification of its intended behaviour. 
A program can be synthesized which meets a specification. One program can be 
transformed into another more efficient one, meeting the same specification. A 
program can be proved to terminate. 

The specification of a program is usually represented as a logical formula. 
This formula defines a relation between the input and output of a program, 
but without describing how the output is to be constructed from the input. For 
instance, a sorting program might be specified by saying that the output is an 
ordered permutation of the input. Automatic theorem proving can then be used 
to give machine assistance to the development of programs, e.g. by helping to 
synthesize a program to meet the specification. 

Researchers in automated program development have developed interactive the- 
orem provers to tame the combinatorial explosion. They use automatic theorem 
proving for the straightforward but long and tedious phases of the proof. Hu- 
man users direct the proof between these phases. An automated phase might be 
the application of a decision procedure or the simplification of an expression. A 
human directed phase might be a split into cases or the use of a key lemma. 

A major development came with the introduction of tactics to direct the auto- 
mated phases of the proof (Gordon et al. 1979). A tactic is a computer program 
whose effect is to apply the rules of a mathematical theory to a conjecture. The 
simplest tactics merely apply one rule. Tactics can be composed using tacticals. 
A tactical might apply two tactics in sequence, apply one tactic repeatedly or use 
a test to decide which of two tactics should be applied. Compound tactics can be 
built, for instance, to implement simplification and decision procedures. 

5. Examples of tactics 

In my group at Edinburgh we have built a number of tactics for different areas 
of mathematics. Our methodology is to study a number of similar proofs, try 
to abstract from these to identify the common structure, and then implement 
this as a tactic. We also try to identify the conditions under which these tactics 
should be applied. Our theorem provers use these tactics and their preconditions 
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to search, not at the level of low level proof rules, but at the higher level of tactics. 
At this higher level the proof steps are bigger and the number of choices is fewer. 
This helps to defeat the combinatorial explosion and make a practical theorem 
prover. 

Some of our tactics implement the traditional simplification and decision pro- 
cedures, but others go beyond this to implement larger and more difficult proof 
steps. For instance, we have built tactics which make case splits, apply induction, 
generalize conjectures and introduce key lemmas. Some of our tactics can direct 
a whole proof. This section gives a flavour of what is possible by describing some 
of these tactics. 

(a) Equation solving: isolation 
Our PRESS system solved equations taken from 'high school' examination pa- 

pers (Sterling et al. 1989). Typical equations solved are 

log2 x + logx 2 = 5, 
3 tan 3x - tanx + 2 = 0 

42x+15x-2 = 61-x 

In each case the solver is asked to find the values of unknown quantity, x, which 
will make the equation true. 

For PRESS we developed a collection of tactics which together are highly suc- 
cessful in solving equations. For instance, on examples, such as those above, drawn 
from the GCE A Level (a pre-University examination) papers, PRESS typically 
solves 80-90%. 

One of these tactics is isolation. Isolation applies whenever the equation con- 
tains only a single occurrence of the unknown. It works by stripping off all func- 
tions surrounding this single occurrence until it is isolated on one side of the 
equation. Consider, for instance, the following simple equation 

2x2 - 3 = 5. 

Since it contains only one occurrence of x, isolation applies and solves it as follows 

22 - 3 = 5, 
22 = 5 +3, 

= (5 + 3)/2, 
x = ?[(5 + 3)/2], 
x= +2. 

Each isolation step removes the outermost function surrounding x and applies 
its inverse to the other side of the equation. First -3 is taken from the left-hand 
side and replaced by +3 on the right; then 2 is replaced by /2 and, finally, square 
is replaced by square root. Arithmetic is then used to simplify the result. 

Isolation can be implemented by selective term rewriting. The rewrite rules all 
have the same essential form 

f(U) = V -* U = f-1(V) 
where f-1 is the inverse of f. Note that U must be instantiated to an expression 
which contains the single occurrence of the unknown x. The isolation rules which 
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are used in our example are 

U- W VU =V+ W, 
WU = V U = V/W, where W 0, 

U2= V --U = W. 

Isolation will not work on an equation containing more than one occurrence of 
the unknown. It isolates only one occurrence on the left-hand side of the equation. 
The right-hand side of the equation will then contain the other occurrences, which 
means it fails the criteria for being a solution. 

To solve equations containing more than one occurrence of x requires additional 
tactics, e.g. collection and attraction. Collection works by reducing the number 
of occurrences of the unknown, x, until isolation applies. Attraction works by 
bringing occurrences of the unknown closer together until collection applies. Thus 
attraction prepares equations for collection which prepares them for isolation. In 
PRESS, six major tactics and a few lesser ones interact in this way to produce 
solutions to a wide variety of equations. All these tactics are implemented as the 
selective application of rewrite rules. 

(b) Inductive proofs: rippling 
Our oyster-clam system proves inductive theorems of the kind required to 

reason about recursive computer programs (Bundy et al. 1991). Typical theorems 
proved are 

x+ (y + z)= ( + y) + z, 

len(app(x, y)) = len(x) + len(y), 
rev(rev(x)) = x, 

where app(x, y) appends the lists x and y, len(x) is the length of the list x and 
rev(x) is the list x in the reverse order. We have developed a collection of tactics 
which are highly successful in proving such theorems. 

Many of the functions which occur in these theorems are defined recursively, 
i.e. in terms of themselves. For instance, + is defined on the natural numbers (the 
non-negative integers: 0, 1, 2, 3,...) as follows: 

O + y = y 

s(x) + y = s(+ y), 

where s(x) = x + 1, e.g. s(s(s(0))) represents the number 3. s is the successor 
function. It is a convenient trick for representing all the natural numbers with 
just one constant, 0, and one function, s. 

To prove theorems about recursive functions it is necessary to use mathematical 
induction. There are many different rules of induction (in fact, infinitely many), 
but the most common is 

P(O), P(n) -- P(s(n)) 

P(n) 
i.e. to prove P for any natural number n, first prove it for 0, and second, assuming 
it for n, prove it for s(n). The first subgoal is the base case and the second subgoal 
is the step case. In the step case P(n) is called the induction hypothesis and 
P(s(n)) is called the induction conclusion. 
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'X)il + (y + z)- (Is(xI + y)+ z 

(x+(8y?z {)) =(S(X+y))+z 

. ^ . (.. . . (^.t. ..tJl x+ (y + z) = (x - y)+ z 
X + (y + z) (x + y) + z 

Figure 2. Rippling in the associativity of +. The first equation is the induction conclusion an- 
notated by wave-fronts. Subsequent equations show the effect of rippling these wave-fronts out- 
wards using the rewrite rules (5.1) (three times) and finally the cancellation rule for s (5.2). The 
wave-fronts ripple outwards until they finally disappear altogether. At this point the induction 
hypothesis can be used to complete the proof. In general, the wave-fronts do not disappear but 
are moved to the outside of the induction conclusion leaving an expression inside that matches 
the induction hypothesis. When rippling is complete the induction hypothesis is used to prove 
the induction conclusion. The tactic which does this is called fertilization. 

Rippling is a tactic we have developed to guide the step case of inductive 
proofs (Bundy et al. 1993). It tries to rewrite the induction conclusion so that 
the induction hypothesis can be applied to it. In particular, it moves the innermost 
s(...) parts of the induction conclusion outwards to form a copy of the induction 
hypothesis within the induction conclusion, i.e. it rewrites P(s(n)) to Q[P(n)]. 
The expression s(...) is an example of what we call a wave-front. The word 
'rippling' comes from the following analogy. 

Imagine you are in Scotland standing beside a loch. The surrounding moun- 
tains are reflected in the loch. You throw something in the loch. The waves it 
makes disturb the reflection. The wave-fronts ripple outwards leaving the reflec- 
tion intact again. The mountains are the induction hypothesis, the reflection is 
the induction conclusion and the wave-fronts are the expressions introduced into 
the induction conclusion by the induction rule. 

We illustrate rippling in figure 2 with the example of the associativity of +. 
The wave-fronts are shaded to emphasize their movement. 

Rippling is implemented as selective rewriting using rewrite rules of the form 

f( L ),)'.( ) ) 7ul.(f (U )) 

where the wave-fronts in the rule must match wave-fronts in the induction con- 
clusion. These are called wave-rules. Examples of wave-rules are 

IsI:I Vi + v S(( t-I ) (5.1) 

IIIi _ s(llll U = V (5.2) 

Note that in wave-rule (5.2) the right-hand side wave-front, w2, is empty. 
When wave-rules are applied, not only must the mathematical expressions 

match, but so too must the wave-fronts. This cuts down the amount of search 
quite drastically (Bundy et al. 1993, ?2.5), i.e. there is rarely more than one 
wave-rule applicable to a sub-expression. Similar remarks hold for other tactics 
described in this paper. As a result, our tactic-based approach avoids the combi- 
natorial explosion which plagues other approaches to automatic theorem proving. 
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Figure 3. The induction strategy. The induction strategy consists of the application of a rule of 
induction followed by one or more base and step cases. Only one of each is shown here. The step 
case consists of rippling until the induction hypothesis appears within the induction conclusion 
and then fertilizing to use the induction hypothesis in the proof of the induction conclusion. 

(c) An induction strategy 
By combining tactics together it is possible to make a tactic that can direct 

the complete application of an induction rule, i.e. including the proof of the base 
and step cases. We have implemented such a tactic in oyster-clam, which we call 
the induction strategy. It is summarized in figure 3. For some simple theorems 
the induction strategy can direct the whole proof, e.g. the associativity of +. 
Some slightly more complex theorems can be proved by nested applications of 
the induction strategy. 

The induction strategy shows that the word 'tactic' was, perhaps, ill-chosen. 
Theorem proving tactics are not restricted to directing only parts of proofs, as 
their name might suggest. The induction strategy alone can direct a complete 
proof. Nor are they restricted to directing only the simplest parts of proofs, 
e.g. decision procedures and simplification. For instance, rippling is capable of 
making, so called, 'eureka' steps, i.e. those proof steps that seem to call for human 
intervention. 

(d) Proof critics 

However, in tactic-based systems there are nearly always theorems which can- 
not be proved solely by the use of available tactics. For instance, the ripple tactic 
will fail if none of the available wave-rules is applicable to the current subgoal. 
Then the induction strategy will also fail. 

To cope with these failures we have developed a system of proof critics. With 
each tactic is associated a description of what it is trying to achieve and a col- 
lection of critics. Each critic tries to capture one of the ways in which the tactic 
might fail to reach its goal and to suggest a patch to the partial proof. The critic 
has a precondition, which is a variant of the precondition of its associated tactic, 
e.g. it might be missing one key part. This precondition is used to determine 
which critic to use to patch a failed proof. 
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The critics associated with rippling can suggest any of the following patches, 
according to the precise way in which rippling fails. 

1. Conjecturing a wave-rule which would apply to the current subgoal, proving 
it and then using it. 

2. Attempting a more complex form of induction which would produce wave- 
fronts at this point in the proof which would enable a wave-rule to apply that 
currently does not. 

3. Generalizing the conjecture in such a way as to allow a wave-rule that cur- 
rently does not apply to do so. 

4. Splitting the proof into cases so that a conditional wave-rule, which was 
previously inapplicable owing to the failure to prove its condition, will apply. 

All of these patches represent proof steps which have previously been regarded 
as hard to automate. For instance, suggesting appropriate lemmas and general- 
izing conjectures are classic examples of 'eureka' steps. 

(e) Proof plans 
Our oyster-clam system works in two phases. The clam system first tries to find 

a plan of the proof. This is represented as a custom-built tactic constructed from 
the general-purpose tactics known to the system and modified by the proof critics. 
The oyster system then runs this custom-built tactic to produce a formal proof. 
The preconditions of the tactics are used during the proof planning phase together 
with predictions of the effects of the tactics. Fairly standard AI plan formation 
techniques are used to construct the customized tactic from the preconditions 
and effects of the general-purpose tactics and proof critics. 

We find this two phase process useful. For instance, it enables critics to work 
on a partial proof and to suggest radical rearrangements of it, e.g. going back 
to the beginning and proving a more general theorem but with a similar proof. 
However, it is not an essential ingredient of a tactic-based system. Tactics are 
most commonly used in interactive systems, in which the user decides when and 
which tactic to call. It is also possible to implement a totally automated one- 
phase process in which search is conducted at the level of tactics using their 
preconditions to determine which tactics are applicable. Christian Horn has built 
a rival version of oyster which uses tactics in this way (Horn 1992). This one 
phase approach works quite well for organizing tactics but it does not lend itself 
so well to the use of critics for patching failed proof attempts. 

6. Comparison of tactics and subsumption architectures 

We now turn to the main question addressed in this paper; to what extent are 
tactic-based theorem provers similar to the subsumption architecture advocated 
by Brooks. To facilitate this comparison I have translated my characterization of 
Brooks's subsumption architecture from ? 1 into tactic-based terminology. 

The theorem prover must be organized as a network of tactics. Each of these tactics is 
behavioural, i.e. it is capable of performing a whole theorem proving behaviour, e.g. decision 

making, simplification, induction. This is in contrast to a functional module, where each 
module performs one part of a sequence of tasks, e.g. formula retrieval, matching, search 
control. Behavioural tactics are organized into layers, but operate independently and in 
parallel. Overall behaviour emerges from the combination of the behaviours of the tactics. 
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The only interaction allowed is that higher-level tactics may inhibit the action of lower- 
level ones. There is no hierarchical organization, no message passing between tactics and 
no central model of the world. 

We start by considering in what ways tactic-based theorem proving fits this 
description and then discuss in what ways it does not fit. 

(a) Similarities between tactics and subsumption architectures 
A tactic-based system is organized as a network of behavioural modules. Each 

tactic is a module. A tactic is 'behavioural' in the sense that it performs part of 
the theorem proving task unaided. For instance, a decision procedure tactic will 
prove whole theorems if they happen to fall into its decidable class. More usually 
it will 'finish off' the cases of a larger proof. Other tactics perform the earlier 
parts of a proof, e.g. setting up an induction. That these tactics only perform 
part of the overall theorem proving task does not make them less behavioural 
than Brooks's modules. Some of Brooks's modules only perform part of a task. 
For instance, a Brooks's walking module might perform the early part of a task 
by getting the robot to the right place, e.g. so that it can grasp an object. 

Although we have organized them hierarchically, tactics could be organized in a 
non-hierarchical way. A theorem prover could consist of a pool of tactics together 
with their preconditions. The conjecture to be proved could be stored in some 
central pool accessible to all tactics. Any tactic whose preconditions are satisfied 
would fire, manipulate the conjecture, and put any resulting subgoals in the cen- 
tral pool. The other tactics would try to solve these subgoals. Each tactic would 
be built on the assumption that the other tactics exist and will do the right thing 
with the subgoals it produced, but it would not need to communicate with them 
directly. A special module would need to inspect the goal central pool to deter- 
mine when the theorem was proved and terminate the process. Horn's alternative 
version of oyster already works in much this way, except for the parallelism, and 
this omission could be readily rectified. 

It is worth noting that this kind of non-hierarchical organization is quite com- 
mon in GOFAI, e.g. production rules, blackboard architectures. However, it usually 
introduces lots of search and causes a combinatorial explosion. The preconditions 
of our tactics preclude too much competition and we rarely have much search. 

The central store of conjecture and subgoals can be regarded as analogous to the 
real world in which the robot moves. Manipulations of these formulae correspond 
to actions on the real world. This central store is not the forbidden (by Brooks) 
'model' of the real world. These are not simulations of real formulae, they are real 
formulae. 

The fact that we did not choose this kind of organization in our proof plans 
work is irrelevant to the argument in this paper. It could be done this way, Horn 
has shown. 

(b) Differences between tactics and subsumption architectures 

(i) Real world interaction 
The most obvious difference between Brooks's behaviour-based robotics pro- 

posal and any automatic theorem prover is the lack of any real world in theorem 
proving. The objects of pure mathematics are symbols and expressions. These 
are inherently abstract. Thus there is nothing for the prover to be situated or 
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embodied in. This difference seems to be unavoidable, i.e. this part of Brooks's 
proposal seems unachievable. 

However, this disconnectedness with the real world could be interpreted as an 
implicit criticism of automated mathematical reasoning as being too restricted 
to proving theorems. Real mathematicians are not concerned only with proving 
theorems in particular theories. They also formalize informally-stated problems, 
design mathematical theories, decide which conjectures are interesting to prove, 
etc. Much of this mathematical activity is informed by real world problems. The 
classic example is the interaction between physics and mathematics, which led 
to the invention of the calculus, Fourier series, modern analysis and much, much 
more. A Brooks-style behaviour-based automatic mathematician might, for in- 
stance, use a mathematics module to help solve engineering problems prior to 
constructing mechanical devices. 

This said, it is still true that much of mathematics can and is carried out 
in a disembodied manner, even by human mathematicians. Such disembodied 
mathematics remains as a challenge to the Brooks proposal. 

(ii) Hierarchical organization 
In our proof planning approach to theorem proving we chose a very hierarchical 

organization. This takes two different forms. 
1. Large tactics are built from smaller ones, e.g. our induction strategy is built 

from the base and step case tactics; the step case is built from rippling and 
fertilization. 

2. Our clam program is a centralized planner. It constructs a customized tactic 
for the current conjecture by combining general-purpose tactics modified by proof 
critics. 

Let us call these type 1 and type 2 hierarchy, respectively. I argued in ?6(a) 
that type 2 hierarchy is an inessential part of tactic-based theorem proving. A flat 
organization of tactics is possible and has been implemented (see, for example, 
Horn 1992). We have chosen not to do this because it does not facilitate the use 
of proof critics to patch failed proof attempts. Critics must investigate the failure 
of a tactic, which requires message passing between tactic and critic. Critics have 
proven a powerful technique in avoiding the inherent limitations of the tactic- 
based approach and for suggesting key 'eureka' steps in proofs. 

An alternative, more Brooksian, implementation of critics is possible.t Each 
critic would stand alone, monitoring the state of the proof. However, such an 
implementation would be much clumsier. Currently each critic is cued by the 
failure of a particular method. Without message passing between a failing method 
and its critics, it would be quite complicated for a critic to work out that its time 
had come. Thus, type 2 hierarchy can be avoided, but at a heavy price; at best 
we would have to settle for an inferior implementation of critics. 

Type I hierarchy is harder to avoid. Building compound tactics from smaller 
ones is an essential part of the philosophy of tactic-based theorem proving. Fortu- 
nately, this kind of hierarchy seems quite compatible with Brooks's subsumption 
architecture. He imposes no constraint on how each behavioural module is built. 
Hierarchical module construction seems to be merely good programming prac- 

t I thank Geraint Wiggins for suggesting this. 
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tice. Brooks only rules out a hierarchical organization of the resulting module 
network, any message passing between them or any central model of the world. 
Indeed Brooks's proposal for 'layering' seems to come close to type 1 hierarchyt 
(Brooks 1986, ?II.B). The main departure from layering is that we have not yet 
discovered a need to have 'higher level' tactics inhibit the behaviour of 'lower 
level' ones; unless you count the termination of the theorem proving process by 
the module that recognizes that the proof is complete. 

Deviation from Brooks's proposal might arise if we want a tactic both to be 
part of some larger tactic and also to be a member of the tactic network in its 
own right. From our own experience, examples of this seem to be quite rare, but 
they do occasionally arise, e.g. rippling is both part of our induction strategy and 
useful stand-alone. 

7. Conclusion 

In this paper we have tried to test Brooks's hypothesis that his behaviour- 
based robotics proposal can be extended to cover the 'whole story' of 'building 
intelligent systems'. We have subjected it to the toughest test we could devise, 
to see if it could cover an aspect of intelligent behaviour for which it seemed very 
unpromising: automatic theorem proving. This test has been surprisingly suc- 
cessful. The tactic-based approach to theorem proving is remarkably similar to 
Brooks's subsumption architecture. Tactics are very similar to behaviour-based 
modules. A non-hierarchical organization of these tactics is possible, although it 
remains to be seen whether this is the most effective organization. There are rea- 
sons for suspecting that a hybrid tactic-based and central planning model may be 
more successful. For instance, this allows the efficient use of proof critics. Central 
reasoning is also required for analysing and modifying the existing collection of 
tactics, i.e. for learning. 

Brooks's requirement that the theorem prover be situated and embodied in the 
real world seems inherently impossible to achieve. It is not clear what constitutes 
the real world in the case of mathematics. It is necessary to have some internal 
representation of the conjecture to be proved and the subgoals generated during 
a proof attempt. These must be either stored centrally or passed between tactics 
to enable them to interact. Unfortunately, either a central model of the world or 
message passing between tactics violate Brooks's proposal. One solution to this 
is to view the central goal pool as the real world, rather than as a model of it. 
This solution is clearly controversial. 

Situatedness and embodiment might be achieved by building a robot that used 
mathematics to solve real world problems. However, there is still a challenge to 
emulate the behaviour of pure mathematicians who appear to do a lot of theorem 
proving without direct reference to the real world. 

It is significant that it is the non-hierarchical organization part of Brooks's 
proposal that has been most severely tested by our experiment. This has always 
seemed the most unsatisfactory aspect of his work. His proposal that modules 
be combined by 'layering' is vague and in practice seems to result in rather ad 
hoc programming rather than a modular and principled combination. Similar 

t I thank Fausto Giunchiglia for pointing this out. 
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remarks apply to the restriction on message passing. For instance, in one case, 
Brooks avoids the letter of this law by having one module record a message in 
the external world and another module read it from there. 

Thus these parts of the proposal frequently impose unwanted restrictions which 
the implementer is forced to hack around. It seems timely to examine them and 
decide whether they are serving a useful purpose or whether Brooks's proposal 
would be better without them. 

I thank Margaret Boden, Rodney Brooks, Fausto Giunchiglia, Andrew Ireland, Sean Matthews 
and Geraint Wiggins for feedback on an earlier draft of this paper. Ian Green and Gordon Reid 
helped me fix some tricky LATEX problems. The research reported here was supported by SERC 
grant GR/H/23610. 
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Discussion 

D. DENNETT (Tufts University, U.S.A.). If we compare some classical architec- 
tures with behaviour-based robotics, we find similarities; for example, blackboard 
architectures or SOAR. 

A. BUNDY. I agree - and production rules. 

M. SHARPLES (University of Sussex, U.K.). One difference between Professor 
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Bundy's theorem proving system and Brooks's approach is the role of mediating 
representations between the different modules. Brooks rejects these. 

A. BUNDY. Mediating representations are inherent in the theorem proving task. 
But one can think about my architecture so that this difference disappears. 
Brooks appeals to the world as the medium for communication between inde- 
pendent behaviour-producing modules. 'The world' in my system is the set of 
partial proofs used by the independent sub-systems in the theorem prover. 
M. BRADY (Oxford University, U.K.). In Brooks's architecture, but not yours, 
each layer may suppress the activity of the layer below. Secondly, don't the com- 
plex difficulties faced in theorem proving or robotics mean that, in practice, the 
problems can't be solved by either extremes (GOFAI or subsumption techniques)? 
Don't we need hybrid approaches? 

A. BUNDY. Agreed on both points. 
D. PARTRIDGE ( University of Exeter, U.K.). Theorem proving is unlike the prob- 
lems typical of behaviour-based robotics. It's an intellectual task, not one of gen- 
eral intelligence. 
A. BUNDY. Agreed. However, Brooks does claim that subsumption architectures 
can solve high-level cognitive tasks. I've shown that a subsumption architecture 
can do theorem proving. That's what's interesting. 
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