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Behavior-Bas38. Behavior-Based Systems

Maja J. Matarić, François Michaud

Nature is filled with examples of autonomous
creatures capable of dealing with the diversity,
unpredictability, and rapidly changing conditions
of the real world. Such creatures must make
decisions and take actions based on incomplete
perception, time constraints, limited knowledge
about the world, cognition, reasoning and physical
capabilities, in uncontrolled conditions and with
very limited cues about the intent of others.
Consequently, one way of evaluating intelligence
is based on the creature’s ability to make the most
of what it has available to handle the complexities
of the real world. The main objective of this
chapter is to clarify behavior-based systems and
their use in single- and multi-robot autonomous
control problems and applications. The chapter is
organized as follows. Section 38.1 overviews robot
control, introducing behavior-based systems in
relation to other established approaches to robot
control. Section 38.2 follows by outlining the basic
principles of behavior-based systems that make
them distinct from other types of robot control
architectures. The concept of basis behaviors, the
means of modularizing behavior-based systems,
is presented in Sect. 38.3. Section 38.4 describes
how behaviors are used as building blocks for
creating representations for use by behavior-
based systems, enabling the robot to reason
about the world and about itself in that world.
Section 38.5 presents several different classes of
learning methods for behavior-based systems,
validated on single-robot and multi-robot sys-
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tems. Section 38.6 provides an overview of various
robotics problems and application domains that
have successfully been addressed with behavior-
based control. Finally, Sect. 38.7 concludes the
chapter.

38.1 Robot Control Approaches

Situated robotics deals with embodied machines in
complex, challenging, often dynamically changing en-
vironments. Situatedness thus refers to existing in

a complex, challenging environment, and having one’s
behavior strongly affected by it. In contrast, robots
that exist in static, unchanging environments are usu-
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892 Part E Mobile and Distributed Robotics

ally not thought to be situated. These include assembly
robots operating in complex but highly structured, fixed,
and strongly predictable environments, specifically en-
gineered and controlled to enable the robot accomplish
very specific tasks. The predictability and stability of
the environment has a direct impact on the complex-
ity of the robot that must operate in it; situated robots
therefore present a significant challenge for the designer.

Robot control, also referred to as robot decision-
making or robot computational architecture, is the
process of taking information about the environment
through the robot’s sensors, processing it as necessary
in order to make decisions about how to act, and execut-
ing actions in the environment. The complexity of the
environment, i. e., the level of situatedness, has a direct
impact on the complexity of control, which is, in turn,
directly related to the robot’s task. Control architectures
are covered in Part I, Chap. 8, of the Handbook.

While there are infinitely many possible ways to
program a robot, there are fundamentally four classes of
robot control methods, described below.

38.1.1 Deliberative – Think, Then Act

In deliberative control, the robot uses all of the avail-
able sensory information, and all of the internally stored
knowledge, to reason about what actions to take next.
The control system is usually organized using a func-
tional decomposition of the decision-making processes,
consisting of a sensory processing module, a modeling
module, a planning module, a value judgment module,
and an execution module [38.1]. Such functional decom-
position allows complex operations to be performed, but
implies strong sequential interdependencies between the
decision-making modules.

Reasoning in deliberative systems is typically in
the form of planning, requiring a search of possible
state–action sequences and their outcomes. Planning,
a major component of artificial intelligence, is known to
be a computationally complex process. The process re-
quires the robot to perform a sequence of sense–plan–act
steps (e.g., combine the sensory data into a map of the
world, then use the planner to find a path in the map, then
send steps of the plan to the robot’s wheels) [38.2–4].
The robot must construct and then potentially evalu-
ate all possible plans until it finds one that enables it
to reach its goal, solve the task, or decide on a trajec-
tory to execute. Shakey, an early mobile robot that used
Strips, a general planner, is an example of such a sys-
tem applied to the problem of avoiding obstacles and
navigating based on vision data [38.5].

Planning requires the existence of an internal, sym-
bolic representation of the world, which allows the robot
to look ahead into the future and predict the outcomes
of possible actions in various states, so as to generate
plans. The internal model, thus, must be kept accurate
and up to date. When there is sufficient time to generate
a plan and the world model is accurate, this approach
allows the robot to act strategically, selecting the best
course of action for a given situation. However, being
situated in a noisy, dynamic world usually makes this im-
possible [38.6, 7]. Today, no situated robots are purely
deliberative. The advent of alternative architectures was
driven by the need for faster yet appropriate action in
response to the demands of complex and dynamically
changing real-world environments.

38.1.2 Reactive – Don’t Think, (Re)Act

Reactive control is a technique for tightly coupling sen-
sory inputs and effector outputs, typically involving
no intervening reasoning [38.8] to allow the robot to
respond very quickly to changing and unstructured en-
vironments [38.9]. Reactive control is inspired by the
biological notion of stimulus–response; it does not re-
quire the acquisition or maintenance of world models, as
it does not rely on the types of complex reasoning pro-
cesses utilized in deliberative control. Rather, rule-based
methods involving a minimal amount of computation,
and no internal representations or knowledge of the
world are typically used. Reactive systems achieve rapid
real-time responses by embedding the robot’s controller
in a collection of preprogrammed, concurrent condition–
action rules with minimal internal state (e.g., if bumped,
stop; if stopped, back up) [38.8,10]. This makes reactive
control especially well suited to dynamic and unstruc-
tured worlds where having access to a world model is
not a realistic option. Furthermore, the minimal amount
of computation involved means that reactive systems are
able to respond in a timely manner to rapidly changing
environments.

Reactive control is a powerful and effective control
method that abounds in nature; insects, which vastly
outnumber vertebrates, are largely reactive. However,
limitations to pure reactivity include the inability to store
(much if any) information or have memory or internal
representations of the world [38.11], and therefore the
inability to learn and improve over time. Reactive con-
trol trades off complexity of reasoning for fast reaction
time. Formal analysis has shown that, for environments
and tasks that can be characterized a priori, reactive con-
trollers can be very powerful, and if properly structured,
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Behavior-Based Systems 38.1 Robot Control Approaches 893

capable of optimal performance in particular classes of
problems [38.12,13]. In other types of environments and
tasks, where internal models, memory, and learning are
required, reactive control is not sufficient.

38.1.3 Hybrid – Think and Act Concurrently

Hybrid control aims to combine the best aspects of re-
active and deliberative control: the real-time response
of reactivity and the rationality and optimality of
deliberation. As a result, hybrid control systems con-
tain two different components, the reactive/concurrent
condition–action rules and the deliberative ones, which
must interact in order to produce a coherent output. This
is challenging because the reactive component deals
with the robot’s immediate needs, such as moving while
avoiding obstacles, and thus operates on a very fast time
scale and uses direct external sensory data and signals.
In contrast, the deliberative component uses highly ab-
stracted, symbolic, internal representations of the world,
and operates on them on a longer time scale, for example
to perform global path planning or plan for high-level
decision-making. As long as the outputs of the two
components are not in conflict, the system requires no
further coordination. However, the two parts of the sys-
tem must interact if they are to benefit from each other.
Consequently, the reactive system must override the de-
liberative one if the world presents some unexpected
and immediate challenge. Analogously, the deliberative
component must inform the reactive one in order to
guide the robot toward more efficient and optimal tra-
jectories and goals. The interaction of the two parts of
the system requires an intermediate component, which
reconciles the different representations used by the other
two and any conflicts between their outputs. The con-
struction of this intermediate component is typically the
greatest challenge of hybrid system design.

Hybrid systems are referred to as using three-layer
architectures, because of their structure, which consists
of the reactive (execution) layer, intermediate (coord-
ination) layer, and deliberative (organization/planning)
layer, and which is organized according to the principle
of increasing precision of control in the lower layers with
decreasing intelligence [38.14]. A great deal of research
has been invested into the design these components and
their interactions [38.2, 15–21].

Three-layer architectures aim to harness the best of
reactive control in the form of dynamic, concurrent, and
time-responsive control, and the best of deliberative con-
trol, in the form of globally efficient actions over a long
time scale. However, there are complex issues involved

in interfacing these fundamentally differing components
and the manner in which their functionality should be
partitioned is not yet well understood [38.22].

38.1.4 Behavior-Based Control –
Think the Way You Act

Behavior-based control employs a set of distributed, in-
teracting modules, called behaviors, that collectively
achieve the desired system-level behavior. To an ex-
ternal observer, behaviors are patterns of the robot’s
activity emerging from interactions between the robot
and its environment. To a programmer, behaviors are
control modules that cluster sets of constraints in order
to achieve and maintain a goal [38.22,23]. Each behavior
receives inputs from sensors and/or other behaviors in
the system, and provides outputs to the robot’s actuators
or to other behaviors. Thus, a behavior-based controller
is a structured network of interacting behaviors, with no
centralized world representation or focus of control. In-
stead, individual behaviors and networks of behaviors
maintain any state information and models.

Well-designed behavior-based systems take advan-
tage of the dynamics of interaction among the behaviors
themselves, and between the behaviors and the environ-
ment. The functionality of behavior-based systems can
be said to emerge from those interactions and is thus
neither a property of the robot or the environment in
isolation, but rather a result of the interplay between
them [38.22]. Unlike reactive control, which utilizes
collections of reactive rules with little if any state and
no representation, behavior-based control utilizes col-
lections of behaviors, which have no such constraints;
behaviors do have state and can be used to construct rep-
resentations, thereby enabling reasoning, planning, and
learning.

Each of the above approaches to robot control has
its strengths and weaknesses, and all play important and
successful roles in certain robot control problems and ap-
plications. Each offers interesting but different insights,
and no single approach should be seen as ideal or other-
wise in the absolute; rather, the choice of robot control
methodology should be based on the particular task,
environment, and robot.

For example, reactive control is the best choice for
environments demanding immediate response, but such
speed of reaction comes at the price of being myopic,
not looking into the past or the future. Reactive sys-
tems are also a popular choice in highly stochastic
environments, and environments that can be properly
characterized so as to be encoded in a reactive input–
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output mapping. Deliberative systems, on the other hand,
are the only choice for domains that require a great
deal of strategy and optimization, and in turn search and
planning. Such domains, however, are not typical of situ-
ated robotics, but more so of scheduling, game playing,
and system configuration, among others. Hybrid sys-
tems are well suited for environments and tasks where
internal models and planning are needed, and the real-
time demands are few, or sufficiently independent of the
higher-level reasoning. Behavior-based systems, in con-
trast, are best suited for environments with significant
dynamic changes, where fast response and adaptivity
are crucial, but the ability to do some looking ahead and
avoid past mistakes is required. Those capabilities are
spread over the active behaviors, using active represen-
tations if necessary [38.23], as discussed later in this
Chapter.

Characterizing a given robot computational archi-
tecture based on these four classes of control is often
a matter of degree, as architectures attempt to com-
bine the advantages of these paradigms, especially
the responsiveness, robustness, and flexibility of the
behavior-based approach with the use of abstract repre-

sentational knowledge for reasoning and planning about
the world [38.22] or for managing multiple conflicting
goals. For example, AuRA uses a planner to select be-
haviors [38.22] and 3T uses behaviors in the execution
layer of a three-level hierarchical architecture [38.24];
both of these architectures dynamically reconfigure be-
haviors according to reasoning based on available world
knowledge [38.22].

Robot control presents fundamental tradeoffs having
to do with time scale of response, system organization,
and modularity: thinking allows looking ahead to avoid
mistakes, but only as long as sufficient, accurate, up-to-
date information is available, otherwise reacting may be
the best way to handle the world. As a consequence of
these inherent tradeoffs, it is important to have different
methodologies at our disposal rather than having to fit
all controller needs into a single methodology. Select-
ing an appropriate control methodology and designing
an architecture within it is best determined by the situat-
edness properties of the problem, the nature of the task,
the level of efficiency or optimality needed, and the cap-
abilities of the robot, both in terms of hardware, world
modeling, and computation.

38.2 Basic Principles of Behavior-Based Systems

The basic principles of behavior-based control can be
summarized briefly as follows:

• Behaviors are implemented as control laws (some-
times similar to those used in control theory), either
in software or hardware, as a processing element or
as a procedure.• Each behavior can take inputs from the robot’s sen-
sors (e.g., proximity sensors, range detectors, contact
sensors, camera) and/or from other modules in the
system, and send outputs to the robot’s effectors
(e.g., wheels, grippers, arm, speech) and/or to other
modules.• Many different behaviors may independently re-
ceive input from the same sensors and output action
commands to the same actuators.• Behaviors are encoded to be relatively simple, and
are added to the system incrementally.• Behaviors (or subsets thereof) are executed con-
currently, not sequentially, in order to exploit
parallelism and speed of computation, as well as the
interaction dynamics among behaviors and between
behaviors and the environment.

Behavior-based robotics was developed for situ-
ated robots, allowing them to adapt to the dynamics
of real-world environments without operating upon ab-
stract representations of reality [38.11], but also giving
them more computational capability and expressivity
than are available to reactive robots. Behavior-based
systems maintain a tight coupling of sensing and ac-
tion through behaviors, and use the behavior structure
for representation and learning. Therefore, it is uncom-
mon for a behavior to perform extensive computation or
reasoning relying on a traditional world model, unless
such computation can be done in a timely manner in re-
sponse to dynamic and fast-changing environment and
task demands.

Behaviors are designed at a variety of abstraction
levels, facilitating bottom-up construction of behavior-
based systems. New behaviors are introduced into the
system incrementally, from the simple to the more
complex, until their interaction results in the desired
overall capabilities of the robot. In general, behaviors
encode time-extended processes, not atomic actions that
are typical of feedback control (e.g., go-forward-by-a-
small-increment or turn-by-a-small-angle). As a first
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Activation conditions

Stimuli Process Action

Behavior n
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Action
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perception
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Fig. 38.1 A general schematic of one type of behavior-based systems

step, survival behaviors, such as collision-avoidance,
are implemented. These behaviors are often reactive in
nature, since reactive rules can and often do form com-
ponents of simple behaviors. Figure 38.1 summarizes
the general components of low-level behavior-based
systems. Note that there is a distinction between acti-
vation conditions, which allow the behavior to generate
actions, and stimuli, from which actions are gener-
ated.

Next, behaviors are added that provide more com-
plex capabilities, such as wall-following, target-chasing,
homing, find-object, get-recharged, avoid-the-light,
aggregate-with-group, pick-up-object, find-landmark.
Depending on the system being designed, behaviors im-
plementing distributed representations may be added,
as may be behaviors capable of learning about the
world and/or the robot itself, and operating on those
representations and learned information. Representa-
tion and learning are addressed in more detail in
Sect. 38.4.

The interaction and integration of temporal and
spatial effects is of key importance in behavior-based
systems. Merely having one process controlling an ac-
tuator for predetermined intervals of time, or using as
many processes as there are effectors to control them,
does not suffice as the basis for behavior-based control.
It is the combined effect of concurrent processes over
time and driven by perception and internal states that cre-
ates the relevant behavior-based dynamics in a control
system.

Behavior-based systems are typically designed so
the effects of the behaviors interact largely in the en-

vironment rather than internally through the system,
taking advantage of the richness of the interaction dy-
namics by exploiting the properties of situatedness.
These dynamics are sometimes called emergent be-
haviors because they emerge from the interactions
and are not internally specified by the robot’s pro-
gram. Therefore, the internal behavior structure of
a behavior-based system need not necessarily mir-
ror its externally manifested behavior. For example,
a robot that flocks with other robots may not have
a specific flocking behavior; instead, its interaction
with the environment and other robots may re-
sult in flocking, although its only behaviors may
be avoid-collisions, stay-close-to-the-group, and keep-
going.

For such an approach to work, a behavior-based sys-
tem must resolve the issue of choosing a particular action
or behavior from multiple options, a process known
as action selection or the behavior coordination prob-
lem [38.25]. This is one of the central design challenges
of behavior-based systems. One approach to action se-
lection is the use of a predefined behavior hierarchy,
in which commands from the highest-ranking active
behavior are sent to the actuator and all others are ig-
nored. Numerous approaches based on other principles
as well as ad hoc methods for addressing the action se-
lection problem have been developed and demonstrated
on robotic systems. These methods aim to provide in-
creased flexibility but, in some cases, may do so at the
cost of reducing the efficiency or the analyzability of
the resulting control systems. Developed methods in-
clude varieties of motor schemas [38.16], command
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896 Part E Mobile and Distributed Robotics

fusion [38.26], spreading of activation through a be-
havior network [38.27, 28], and fuzzy logic [38.29, 30],
among many others. For a survey of action selection
mechanisms, see [38.31].

38.2.1 Misconceptions

Because behavior-based systems are not always simple
to describe or implement, they are also often misun-
derstood. The most common misconception equates
reactive and behavior-based systems. Historically, the
advent of behavior-based systems was inspired by
reactive systems, and both maintain real-time cou-
plings between sensing and action [38.18, 32], and
are structured and developed bottom-up, consisting of
distributed modules. However, behavior-based systems
are fundamentally more powerful than reactive sys-
tems, because they can store representations [38.33],
while reactive systems cannot. Reactive systems are
limited by their lack of internal state; they are inca-
pable of using internal representations and learning.
Behavior-based systems overcome this limitation be-
cause their underlying unit of representation, the
behavior, can store state internally, in a distributed
fashion.

The means by which state and representation are dis-
tributed in behavior-based systems is one of the sources
of the flexibility of the control methodology. Repre-
sentations in behavior-based systems are distributed,
so as to best match and utilize the underlying be-
havior structure that causes the robot to act. This is
how thinking can be organized in much the same way
as acting. Thus if a robot needs to plan ahead, it
does so in a network of communicating behaviors,
rather than a single centralized planner. If a robot
needs to store a large map, the map might be dis-
tributed over multiple behavior modules representing
its components, such as a network of landmarks, as
in [38.34], or a network of parameterized navigation
behaviors, as in [38.35, 36], so that reasoning about the
map/environment/task can be done in an active fash-
ion, through using message passing within the behavior
network. The planning and reasoning components of
the behavior-based system use the same mechanisms as
the sensing- and action-oriented behaviors, and as a re-
sult do not operate on a fundamentally different time
scale and representation relative to one another. Various
forms of distributed representations are used, ranging
from static table structures and networks, to active
procedural processes implemented within the behavior
networks.

Another area of common misconception relates to
the comparison between behavior-based systems and
hybrid systems. Because the two use such different
modularization strategies, it is often assumed that one
approach (usually hybrid) has improved expressive cap-
abilities. In fact, behavior-based and hybrid systems
have the same expressive and computational capabil-
ities: both can exploit representations and look ahead,
but they do so in very different ways. This has re-
sulted in different application domains being best suited
to behavior-based versus hybrid systems. Specifically,
hybrid systems dominate the domain of single-robot
control, unless the task is so time-demanding that a re-
active system must be used. Behavior-based systems
dominate the domain of multi-robot control because
the notion of collections of behaviors within the system
scales well to collections of such robots, resulting in ro-
bust, adaptive group behavior [38.37, 38]. See Chap. 40
on multiple mobile robot systems for more details.

Like hybrid systems, behavior-based systems may be
organized in layers, but unlike hybrid systems, the lay-
ers do not differ from each other drastically in terms of
time scale and representation used. Behavior-based sys-
tems typically do not employ the hierarchical/sequential
division favored by hybrid approaches. Behavior-based
systems do provide both low-level control and high-
level deliberation; the latter can be performed by one
or more distributed representations that compute(s) over
the other behaviors or modules, often directly utiliz-
ing low-level behaviors and their outputs. The resulting
systems, built from the bottom up, do not divide into
differently represented and independent components
and consist of elements directly tied in some ways
to behaviors. The power, elegance, and complexity of
behavior-based systems all stem from the ways in which
their constituent behaviors are designed, coordinated,
and used.

To summarize briefly, behavior-based systems:

1. use behaviors as the building block of both decision-
making and action execution processes;

2. use distributed parallel evaluation and concurrent
control over behaviors, which take real-time inputs
from sensory data and send real-time commands to
effectors; and

3. have no centralized components, each module carry-
ing out its own responsibilities. The following
sections describe and illustrate in more detail how
behavior-based basic principles can be used to con-
trol robots.
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38.3 Basis Behaviors

The process of designing a set of behaviors for a robot
is referred to as behavior synthesis, and is typically per-
formed by hand, although some methods for automated
synthesis behaviors have been developed and success-
fully demonstrated [38.39, 40]. In all cases, behaviors
perform a particular activity, attain a goal, or maintain
some state. The notion of defining an optimal behavior
set for a given robot or task has been considered, but it
is generally accepted that such a notion is not realistic
as it is dependent on too many specifics of a given sys-
tem and environment that cannot currently be effectively
formalized.

Matarić et al. [38.38, 41] describe basis behaviors,
also referred to as primitive behaviors, as a tool for struc-
turing and thus simplifying behavior synthesis. Basis
behaviors are a set of behaviors such that each is neces-
sary, in the sense that each either achieves, or helps to
achieve, a relevant goal that cannot be achieved without
it by other members of that set. Furthermore, the basis
behavior set is sufficient for achieving the goals man-
dated for the controller. The term basis was chosen to
be indicative of the similar notion within linear algebra.

The property of necessity or parsimony is analogous to
the idea of linear independence; the idea of sufficiency
is similar to the linear algebraic concept of span. Basis
behaviors should be simple, stable, robust, and scalable.

Another organizational principle of basis behaviors
is orthogonality. Two behaviors are orthogonal if they
do not interfere with one another, each inducing no
side-effects in the other. This is often achieved by hav-
ing behaviors take mutually exclusive sensory inputs.
Another method is to have different behaviors control
separate effectors. This form of factorization is only
feasible when the robot’s dynamics do not inhibit their
separability. In contrast, autonomous helicopter control
is an example of a highly coupled system; Saripalli
et al. [38.42] demonstrated how behavior-based con-
trol can be effectively applied to robust autonomous
helicopter flight.

Basis behavior design principles have been applied
to single-robot as well as multi-robot behavior-based
systems in a variety of applications, ranging from navi-
gation to foraging, coordinated group movement, box
pushing, and others.

38.4 Representation in Behavior-Based Systems

Embedding representation into behavior-based systems
involves the challenge of conserving the basic principles
of the approach at all levels of system decision-making.
Combining abstract reasoning processes with behaviors
must be done in a way that exploits interaction dynamics
and desirable emergent system properties.

Matarić et al. [38.33,43] describe work with a robot
named Toto, which introduced the use of distributed
representation into behavior-based systems. Toto’s cap-
abilities included safe navigation, landmark detection,
map learning, and path planning in the learned map rep-
resentation, all within the behavior-based framework. To
exploit the principles underlying behavior-based con-
trol, Toto’s representation was not a centralized map.
Instead, any newly discovered landmark in the environ-
ment was assigned to a new map representation behavior,
which stored the landmark descriptor (type, estimated
Cartesian location, and compass orientation). When-
ever sensory inputs matched the landmark descriptor,
the robot localized to that particular landmark and the
behavior became active. The following is pseudo-code
for each landmark behavior:

Algorithm 38.1
my-behavior-type: C
my-compass-direction: 0
my-approximate-location: (x,y)
my-approximate-length: 6.5
whenever received (input)
if input(behavior-type) = my-behavior-type

AND
input(compass-direction) =
my-compass-direction

then
active <- true

As new landmarks are discovered, they are added to
the map representation behavior network. In this way,
the topology of the resulting map network is isomorphic
to the topology of the network graph in the physical
environment Toto has explored. The edges in the net-
work graph are also communication links in the behavior
network, allowing landmark behaviors to communicate
through local message passing. Consequently, a cur-
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rently active map behavior can send a message to its
topological neighbor(s), thereby indicating expectation
of it being the next recognized landmark and facilitating
Toto’s localization. Planning in the network takes place
through the use of the same message-passing mechan-
ism. The goal landmark (which could be selected by
the user as part of the task, such as go to this particu-
lar corridor or go to the nearest north-facing wall),
sends messages (i. e., spreads activation) from itself to
its neighbors, which pass it on throughout the network.
As messages are passed, the length of each landmark
in the graph is accrued, thereby estimating the length
of each path. The shortest path arriving at the currently
active network behavior indicates the best direction to
pursue toward the goal. This is equivalent to a distributed
Dijkstra search. Importantly, because this search is not
a static process as it would be in a centralized map
representation, but an active ongoing process within
a behavior map, if the robot is picked up and moved to
another location, as soon as it localizes, it will continue
on the optimal path to the goal; because each landmark
makes a local decision as to where to go next toward
the goal, no unique global path is stored in any central

location/representation. Thus, the path is constantly re-
freshed and updated; if any route is blocked, the link in
the graph is disconnected and the shortest path is updated
dynamically.

Toto exemplifies how, in behavior-based systems,
representations can be stored in a distributed fashion,
so as to best match the underlying behavior structure
that produces the robot’s external goal-driven activity.
If a robot needs to make high-level decisions (such as
planning ahead to a distant goal), it does so in a net-
work of communicating behaviors, rather than a single
centralized component. This results in scalable and ef-
ficient computation for the system as a whole, since
the typically slower decision-making processes such
as planning are distributed and modularized in a way
that makes them more consistent with the time scale
and representation of the rest of the system. Note the
fundamental difference between this general attempt of
behavior-based systems to homogenize their representa-
tion through the use of behaviors as universal modules,
compared to hybrid systems, which rely on inherently
different representations and time scales at different
levels of the system.

38.5 Learning in Behavior-Based Systems

The ability to improve performance over time and to
reason about the world, in the context of a chang-
ing and dynamic environment, is an important area of
research in situated robotics. Unlike in classical ma-
chine learning, where the goal is typically to optimize
performance over a long period of time, in situated
learning the aim is to adapt relatively quickly, toward
attaining efficiency in the light of uncertainty. Models
from biology are often considered, given its proper-
ties of learning directly from environmental feedback.
Variations and adaptations of machine learning, and in
particular reinforcement learning, have been effectively
applied to behavior-based robots, which have demon-
strated learning to walk [38.44], communicate [38.45],
navigate and create topological maps [38.33, 46], di-
vide tasks [38.23, 47], behave socially [38.48], and
even identify opponents and score goals in robot soc-
cer [38.49]. Methods from artificial life, evolutionary
computation/genetic algorithms, fuzzy logic, vision and
learning, multi-agent systems, and many other research
areas continue to be actively explored and applied to
behavior-based robots as their role in animal modeling
and practical applications continues to develop.

When operating in unpredictable and partially ob-
servable environments, an autonomous robot must
examine the evolution of its general states, and try to
capture what emerges from the interaction dynamics
with its environment. Temporal integration of differ-
ent types of observations is an important aspect of
that capability [38.50, 51]. Work on motivational sys-
tems [38.52–56] has shown that a balance between
planning and reactivity for goal management can be
achieved using internal variables activated or inhibited
by different factors [38.37, 57–59]. Motivations can be
cyclic (e.g., circadian rhythms) or change in various
temporally dependent ways [38.55]. In general, the no-
tion of motivations is used to efficiently balance the
need to adapt to the contingencies of the world and to
accomplish the robot’s goals.

In the following subsections, we discuss three suc-
cessfully validated classes of learning approaches in
behavior-based systems:

1. reinforcement learning over behaviors
2. learning behavior networks for task planning
3. learning from history of behavior use
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The approaches differ in what is learned and where learn-
ing algorithms are applied, but in all cases behaviors are
used as the underlying building blocks for the learning
process.

38.5.1 Reinforcement Learning
in Behavior-Based Systems

Behaviors are recognized as excellent substrates for
speeding up reinforcement learning (RL), which is
known to suffer from the curse of dimensional-
ity. The earliest examples of RL in behavior-based
systems demonstrated hexapod walking [38.44] and
box-pushing [38.60]. Both decomposed the control sys-
tem into a small set of behaviors, and used generalized
input states, thereby effectively reducing the size of the
state space. In the box-pushing example, the learning
problem was broken up into modularized policies for
learning separate mutually exclusive behaviors: for get-
ting out when stuck, for finding the box when lost and
not stuck, and for pushing the box when in contact with
one and not stuck. The modularization into behaviors
resulted in greatly accelerated as well as more robust
learning.

Scaling up reinforcement learning to multi-robot
behavior-based systems was explored by [38.23]
and [38.61]. In multi-robot systems, the environment
presents further challenges of nonstationarity and credit
assignment, due to the presence of other agents and
concurrent learners. The problem was studied in the
context of a foraging task with four robots, each initially
equipped with a small set of basis behaviors (search-
ing, homing, picking-up, dropping, following, avoiding)
and learning individual behavior selection policies, i. e.,
which behavior to execute under which conditions. Due
to interference among concurrent learners, this problem
could not be solved directly by standard RL. Shaping,
a concept from psychology [38.62], was introduced; it
was subsequently adopted in robot RL [38.63]. Shaping
pushes the reward closer to the subgoals of the behav-
ior, and thus encourages the learner to incrementally
improve its behaviors by searching the behavior space
more effectively. Matarić [38.61] introduced shaping
through progress estimators, measures of progress to-
ward the goal of a given behavior during its execution.
This form of reward shaping addresses two issues as-
sociated with delayed reward: behavior termination and
fortuitous reward. Behavior termination is event-driven;
the duration of any given behavior is determined by
the interaction dynamics with the environment, and can
vary greatly. Progress estimators provide a principled

means for deciding when a behavior may be terminated
even if its goal is not reached and an externally gen-
erated event has not occurred. Fortuitous reward refers
to reward ascribed to a particular situation–behavior (or
state–action) pair which is actually a result of previous
behaviors/actions. It manifests as follows: previous be-
haviors lead the system near the goal, but some event
induced a behavior switch, and subsequent achievement
of the goal is ascribed most strongly to the final behav-
ior, rather than the previous ones. Shaped reward in the
form of progress estimators effectively eliminates this
effect. Because it provides feedback during behavior
execution, it rewards the previous beneficial behaviors
more strongly than the final one, thus more appropriately
assigning credit.

In summary, reinforcement learning has been
successfully applied to behavior-based robotics, in par-
ticular at the level of behavior selection. The learning
process is accelerated by the behavior structure, which
provides a higher-level representation of actions and
time-extended dynamics.

38.5.2 Learning Behavior Networks

The modularization of behavior-based systems as net-
works of behaviors allows for learning to be applied at
the network level as well. Nicolescu et al. [38.35,36] de-
veloped the notion of abstract behaviors, which separate
the activation conditions of a behavior from its output
actions (so-called primitive behaviors, which share the
same principles as basis behaviors described Sect. 38.3);
this allows for a more general set of activation conditions
to be associated with the primitive behaviors. While this
is not necessary for any single task, it is what provides
generality to the representation. An abstract behavior is
a pairing of a given behavior’s activation conditions (i. e.,
preconditions) and its effects (i. e., postconditions); the
result is an abstract and general operator much like those
used in classical deliberative systems (Fig. 38.2). Primi-
tive behaviors, which typically consist of a small basis
set, may involve one or an entire collection of sequential
or concurrently executing behaviors.

Networks of such behaviors are then used to spe-
cify strategies or general plans in a way that merges
the advantages of both abstract representations and
behavior-based systems. The nodes in the networks are
abstract behaviors, and the links between them repre-
sent precondition and postcondition dependencies. The
task plan or strategy is represented as a network of such
behaviors. As in any behavior-based system, when the
conditions of a behavior are met, the behavior is acti-
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Fig. 38.2 Behavior network

vated. Analogously, when the conditions of an abstract
behavior are met, the behavior activates one or more
primitive behaviors which achieve the effects speci-
fied in its postconditions. The network topology at the
abstract behavior level encodes any task-specific behav-
ior sequences, freeing up the primitive behaviors to be
reused for a variety of tasks. Thus, since abstract behav-
ior networks are computationally lightweight, solutions
for multiple tasks can be encoded within a single system
and dynamically switched.

Nicolescu et al. [38.35, 36] introduced a means for
automatically generating such networks offline as well
as at runtime. The latter enables a learning robot to
acquire task descriptions dynamically, while observing
its environment, which can include other robots and/or
a teacher. The methodology was validated on a mobile
robot following a human and acquiring a representation
of the human-demonstrated task by observing the activa-
tion of its own abstract behavior pre- and postconditions,
thus resulting in a new abstract behavior network rep-
resenting the demonstrated task [38.64]. The robot was
able to acquire novel behavior sequences and combina-
tions (i. e., concurrently executing behaviors), resulting
in successful learning of tasks involving visiting various
targets in particular order, picking up, transporting, and
delivering objects, dealing with barriers, and maneuver-
ing obstacle courses in specific ways.

38.5.3 Learning from History
of Behavior Use

Most deliberative approaches derive knowledge for rea-
soning about the world from sensor inputs and actions

taken by the robot. This results in complex state-space
representations of the world and does not take into con-
sideration the context in which these sensations/actions
are taken. As already discussed, behaviors, which are
readily used as low-level control blocks driven by what
is experienced from the interactions with the environ-
ment, can also serve as an abstract representation to
model those interactions. One approach is to use history
information [38.65], i. e., to explicitly take into consid-
eration the time sequence of observations in order to
make a decision. Applying this idea to behavior-based
systems, by knowing the purpose of each of the behav-
iors and by observing their history of use, the robot can
reason and ground its intentions in what it is experienc-
ing in its operating environment. The concept of abstract
behavior is exploited here as well, to activate behaviors
and as a representation on which to learn.

Learning from history has been validated in
behavior-based systems capable of making the robot
change its behavior selection strategy for foraging
colored objects (blocks) to a homing region in nonsta-
tionary, dynamically changing environments involving
multiple concurrently learning robots [38.66,67]. In that
foraging task, the robot is given two subtasks: search
for a block (searching task), and bring it to the home
region (homing task). The robot is given behaviors to
accomplish these tasks: one behavior for the searching
task, called searching-block, and two for the homing
task, homing and drop-block. A velocity control behav-
ior is also used in both of these tasks to make the robot
move. All these behaviors are referred to as task be-
haviors. Conditions for activating task behaviors are
preprogrammed based on the presence or absence of
a block in front of the robot and the proximity of the
home region.

The robot also needs to navigate safely in the en-
vironment. In this approach, an avoidance behavior is
activated unless the robot is near home and carrying
a block; otherwise it is disabled, to allow the robot to
approach the home region. This type of behavior, used
for handling harmful situations and interference while
accomplishing a task, is referred to as a maintenance be-
havior. The designer determines the conditions in which
maintenance behaviors should be used, but cannot indi-
cate when they will occur during the task, as that is tied
to the dynamics of the interaction between the robot and
its environment.

The robot learns to use alternative behaviors (follow-
side, rest, and turn-randomly), which introduce variety
into its action repertoire that changes the way it accom-
plishes its tasks. In contrast to other types of behaviors,
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these have no a priori activation conditions; the objec-
tive is to allow the robot to learn when to activate these
behaviors according to past experiences, for some pre-
set periods of time, when it is experiencing interference
in accomplishing its task. Figure 38.3 illustrates how the
behaviors are prioritized using a fixed suppression mech-
anism, similar to the subsumption architecture [38.9]
but with the difference that the activated behaviors, i. e.,
those allowed to issue outputs, change dynamically. Fol-
lowing behavior-based principles, an activated behavior
may or may not be used to control the robot, depending
on the sensory conditions it monitors and the arbitration
mechanism. An activated behavior is used only when
it provides commands that actually control the robot.
Whenever a behavior is used, its corresponding symbol
is sent to the interaction model, generating the sequence
of behaviors used over time. Separate learning trees are
used for each task; determining which one to use is done
based on the activated task behavior.

The algorithm uses a tree structure to store the his-
tory of behavior use. The upper part of Fig. 38.3 shows
a typical tree with nodes storing the behavior (H for use
by homing and drop-block) used for controlling the robot
while accomplishing its task, and n, the number of times
a transition between the node itself and its successor has
been made (as observed from behavior use). Initially, the
tree for a particular task is empty and is incrementally
constructed as the robot goes about its task. Leaf nodes
are labeled with E (for end-node) and store the total per-
formance of the particular tree path. Whenever a path is
completely reused, when the same sequence of behav-
iors is used, the E node is updated with the average of
the stored and current performances for recent trials.

Learning is done through reinforcement. Depending
on the domains and the tasks, a variety of factors can be
used to evaluate performance, and different metrics can
be used with this learning algorithm. To see how far the
idea of self-evaluation and learning by observing behav-
ior use can be taken, the evaluation function used here
is not based on characteristics about the environment or
the task. Instead, it is based on the amount of time be-
haviors are used. Comparison between the time spent
using behaviors associated with the tasks and the time
spent exploiting maintenance behaviors is used to derive
the evaluation criterion. Consequently, behavioral selec-
tion strategy is derived from what can be learned from
the experiences of the robot in its environment, without
having to characterize a priori what can be considered
to be optimal operating conditions in the environment.

Using the tree and the evaluation function, the algo-
rithm has two options for using a maintenance behavior:

Behavior sequence
...FFFAAAAAASSSSYYYYYHHH...SSSSAAAA
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Fig. 38.3 Organization of the behavior level and the interaction
model level. Behavior on colored background represent an example
of activated behaviors for the searching task, with Turn-randomly as
a chosen alternative behavior. For clarity, sensory inputs to behaviors
are not shown

1. not to make any changes in its active behavior set
(the observe option)

2. to activate an alternative behavior

The sequence of nodes in a tree path characterizes the
interactions experienced by the robot in the world. Dif-
ferent selection criteria can be used by comparing the
performance at the current position in the tree with
the expected performance, following an exploration (to
learn the effects of alternative behaviors) then exploita-
tion (to exploit what was learned in previous trials)
strategy. The expected performance of a given node is
the sum of the stored end-node performances in its sub-
paths, multiplied by the frequency of use of the subpaths
relative to the current position in the tree. Finally, since
this algorithm is used in noisy and nonstationary condi-
tions, deleting paths is necessary to keep the interaction
model up to date. This is done by keeping only a fixed
number of the most recent paths in the tree.

Results obtained with this approach show that the
robot is able to learn unanticipated strategies (like resting
in front of a static obstacle to increase the turning angle
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and locate a target) and original ones (like yielding when
close to other robots or following walls when the center
of the pen is crowded). Developing such capabilities

is important in general, because it makes it possible for
robots to learn in nonstationary environments, which are
common in the world applications.

38.6 Continuing Work

Behavior-based robots have demonstrated various
standard capabilities, including obstacle avoidance,
navigation, terrain mapping, following, chasing/pursuit,
object manipulation, task division and cooperation, and
learning maps, navigation and walking. They have also
demonstrated some novel applications like large-scale
group behaviors including flocking, foraging, and soc-
cer playing, human–robot interaction, and modeling
insect and even human behavior [38.68–70]. Behavior-
based methods span mobile robots, underwater vehicles,
planetary rovers for space exploration, interactive and
social robots, as well as robots capable of grasp-
ing, manipulation, walking, running, and many others.
Broadly adopted consumer market products, such as
the iRobot Roomba Robotic Floorvac [38.71], also use
behavior-based control, demonstrating its broad appli-
cability.

The use of behavior-based architectures for robot
control has evolved from single-system implementations
to approaches that combine forms of learning, state es-
timation, and distributed computation. Behaviors have
been combined with a fuzzy inference system for in-
door navigation using mobile robots [38.29, 30, 72, 73],
where a command fusion module acts as an arbiter that
combines multiple fuzzy behavior outputs into a single
control signal. This strategy ensures the robot is capable
of making inferences in the face of uncertainty.

Behavior-based methods have been employed in
multi-robot systems from the outset [38.38]. More re-
cently, multi-robot researchers have begun to consider
tasks requiring tightly coupled cooperation; see [38.74]
for an overview and discussion. Such tasks typically re-
quire low-level sensor-sharing and/or for higher-level
explicit coordination. Behavior-based controllers have
been developed and extended in order to address
these challenges. For example, Parker et al. [38.75]
considered reusable behavior units that can be automati-
cally redistributed for low-level information processing.
Werger et al. [38.76] described broadcast of local eligi-
bility (BLE) to enable higher-level group behaviors by
allowing communications to influence each robot’s lo-
cal action selection mechanism. Gerkey et al. [38.77,78]
demonstrated scalable and efficient market-based co-

ordination algorithms for multi-robot coordination in
a variety of tasks, including tightly coupled ones (e.g.,
box-pushing [38.79]).

Several researchers have shown that behavior-based
controllers allow for sophisticated coordination through
a utility-centered model of the collective task. Behaviors
use this representation to produce actions that consider
each robot’s impact on the performance of the group as
a whole. Iocchi et al. [38.80] have shown this in hetero-
geneous multi-robot system, while Batalin et al. [38.81]
demonstrated that complex, interrelated and dynamic
tasks can be performed in coordinated ways in robots
with behavior-based controllers interacting with a sen-
sor network. Stroupe et al. [38.82] considered a mapping
task and developed move value estimation for robot
teams (MVERT), essentially a behavior-based method
for maximizing group knowledge.

Because behavior-based methods lend itself natu-
rally to multi-robot control problems, they have had
a significant influence on that field of research. Simmons
et al. [38.83] described a hybrid architecture designed
for group-level coordination which employs behaviors
as a method for organizing low-level safety-critical con-
troller code. Behaviors have also been used to structure
controllers and networked communication in minimal-
ist systems [38.84]. Some multi-robot research with
a control-theoretic flavor has used separate executable
processes that can be switched on and off dynamically
depending on task constraints, in a manner very similar
to behavior-based control [38.85].

Learning by demonstration has also been combined
with behavior-based systems to produce one-shot learn-
ing and teaching mechanisms for robot control [38.35].
Furthermore, this type of behavior-based architecture
has been used to learn ship navigation strategies [38.86];
during a learning phase, an instructor selects behaviors
for a ship to execute in order to reach a specific goal, and
a subsequent offline stage then generates dependency
links between the behaviors that it witnessed during the
learning phase.

Another form of learning by demonstration has used
probabilistic methods to select and combine multiple
behaviors [38.87]. There, the problem of learning what
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behaviors to execute during autonomous navigation is
treated as a state estimation problem. During a learning
phase, the robot observes commands used by a teacher.
A particle filter then fuses the control commands that
were demonstrated by the teacher to estimate behavior
activation. The method produces a robust controller that
is well suited for dynamic environments.

Behavior-based architectures have also been used
in complex vision systems, for identification rather
than control. In those contexts, each behavior repre-
sents a small unit of visual computation, such as frame
differencing, motion detection, and edge detection, re-
sulting in biologically inspired vision and attention
behavior [38.88, 89].

Behavior-based architectures have also been de-
veloped for the control and learning in humanoid
robots. Figure 38.4 illustrates two robots used in
ongoing projects. In the past, the Cog project demon-
strated behavior-based control for articulated manual
and eye–hand coordination [38.90,91]. Edsinger [38.92]
developed a lightweight behavior architecture for orga-
nizing perception and control of Domo. The architecture
allows for specification of time-contingent behaviors
and distributed computation, resulting in a real-time con-
troller that allows Domo to operate in an environment
with humans. Kismet [38.93] involved several behavior-
based systems that controlled perception, motivation,
attention, behavior, and movement in a human–robot
interaction (HRI) context. Each behavior represented
Kismet’s individual drives and motivations. Situated
modules and episode rules were introduced as part of an
HRI architecture by Ishiguro et al. [38.94] and Kanda
et al. [38.95]; they employed an ordered set of general-
use situated modules and behaviors that are contingent

a) b)

Fig. 38.4a,b Examples of behavior-based control systems
used in human–robot interaction: USC Bandit (a) and Uni-
versity of Sherbrooke Melvin (b)

on a condition, used in sequences defined by a set of
task-specific episode rules.

38.6.1 Motivated Configuration
of Behaviors

Designing robots capable of safely and effectively inter-
acting with humans in real-world settings is one of the
ultimate challenges in robotics. Representation and ab-
stract reasoning may become necessary to keep up with
and adapt to the inherently complex properties of such
environments and tasks.

One possible solution currently being developed and
validated is to add to a behavior-based architecture the
idea of intentionally activating, monitoring, and config-
uring behaviors. Behaviors are considered basic control
components that are selected and modified according to
the intentions of the robot [38.57, 96, 97]. Such inten-
tions can also comply with the distributed philosophy
of behavior-based system by having multiple sources
of influences. The motivated behavioral architecture
(MBA) uses motivational modules to derive the robot’s
intentions.

Motivational modules recommend the use or the
inhibition of tasks to be accomplished by the robot.
Tasks are data structures associated with particular
configuration and activation of one or more behav-
iors. The processing of the robot’s intentions is done
through the dynamic task workspace (DTW), which or-
ganizes tasks in a tree-like structure according to their
interdependencies, from high-level abstract tasks (e.g.,
deliver message) to primitive behavior-related tasks
(e.g., avoid obstacles). Through the DTW and task
representation, motivational modules exchange infor-
mation asynchronously on how to activate, configure,
and monitor behaviors, by submitting modification re-
quests and queries or subscribe to events regarding
the task’s status. With multiple tasks being issued by
the motivational modules, the behavior activation and
configuration module determines which behaviors are
to be activated according to recommendations made
by motivational modules, with or without a particular
configuration (e.g., a destination to go to). A recom-
mendation can either be negative, neutral, or positive, or
take on real values within this range to reflect the de-
sirability of the robot to accomplish specific tasks. The
decisional process implemented in the behavior acti-
vation and configuration module (which can be based
on different methods of action selection, as set by the
designer) takes these information to activate behaviors.
Activation values reflect the resulting robot’s intentions
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derived from interactions between the motivational mod-
ules. Behavior use and other information (useful for task
representation and for monitoring how the behaviors
are used by the robot to interact with the world) are
also communicated through the behavior activation and
configuration module.

Motivational modules are categorized as instinctual,
rational, or emotional. Instinctual motivations provide
basic operation of the robot through the use of sim-
ple rules. Rational motivations are related to cognitive
processes, such as navigation and planning. Emotional
motivations monitor conflicting or transitional situa-
tions between tasks, such as changes in commitments
the robot establishes with other agents (humans or
robot) in its environment. The manifested robot behavior
can thus be appropriately influenced by direct percep-
tion, by reasoning, or by managing commitments and
choices. By distributing motivational modules and dis-
tinguishing their roles, it is possible to more efficiently
exploit and combine the various influences on the tasks
the robot must accomplish. It is also by exchanging
information through the DTW that motivational mod-
ules are kept generic and independent from each other,
allowing for behavior configurations to arise in a dis-
tributed fashion, based on the capabilities available to
the robot. For instance, one instinctual motivation may
monitor the robot’s energy level to issue a recharging
task in the DTW, which activates a recharge behavior
that would make the robot detect and dock to a charg-
ing station. Meanwhile, if the robot knows where it is
and can determine a path to a nearby charging station,

Chargers

Laser range finder

Wireless router

Speakers

Card dispenser

Touchscreen

Microphones (  )

Color camera

Laptops

LED display

a) b)

Fig. 38.5a,b Spartacus (front view (a), back view (b))

a path-planning rational motivation can add a subtask
of navigating to this position, using a goto behavior.
Otherwise, the recharge behavior will at least allow the
robot to recharge opportunistically, when it perceives
a charging station.

The described architecture was used to integrate
a number of intelligent decision-making capabilities
on a robot named Spartacus, shown in Fig. 38.5. In
the American Association for Artificial Intelligence
(AAAI) mobile robot competition, Spartacus was used
to demonstrate how a behavior-based system could in-
tegrate planning and sequencing tasks under temporal
constraints and spatial localization capabilities, using
a previously generated metric map. The system also
used behavioral message reading [38.98], sound pro-
cessing capabilities with an eight-microphone system
for source localization, tracking, real-time sound sep-
aration [38.99, 100], and a touch screen interface to
allow the robot to acquire information about where it
is in the world, what it should do, and how it should do
it [38.101, 102].

Figure 38.6 illustrates the navigation portion of the
architecture implemented on Spartacus. Behavior action
selection scheme used is priority based, and behavior
recommendation and activation are binary. The behav-
iors used are: stop/rest, stopping the robot when the
emergency stop or interacting with people using the
graphical interface is required; avoid, making the robot
move safely in the environment; obey, executing vocal
navigation requests; recharge, stopping the robot while
waiting to be connected to a charging station; goto, di-
recting the robot to a specific location; follow-sound,
making the robot follow an audio source; follow-wall,
making the robot follow a wall (or corridor) when de-
tected, otherwise generating a constant forward velocity.
Only instinctual and rational motivations are imple-
mented in this version, with rational motivations having
greater priority over instinctual ones in case of conflicts.
For instinctual motivations, the task selector selects one
high-level task when none has yet been prioritized. For
instance, between tasks that require the robot to go to
a specific location, this motivation selects the task where
the location is physically closest to the robot. Safe navi-
gation urges the robot to maintain its physical integrity
by recommending obstacle avoidance. For the ratio-
nal motivations, planner determines which primitive
tasks and sequences thereof are necessary to accomplish
high-level tasks under temporal constraints and limited
capabilities. The first implementation was a simple re-
active planning module that interleaves planning and
execution [38.103], as in [38.104] and [38.105]. Naviga-
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Fig. 38.6 Behavior-based architec-
ture with distributed motivational
modules

tor determined the path to a specific location, as required
for tasks in the DTW. Agenda generated predetermined
sequences of tasks to accomplish.

The underlying principles of the described archi-
tecture have also been applied to robots with different
capabilities, such as a robot that uses activation vari-
ables, topological localization and mapping, and fuzzy
behaviors to explore and characterize an environ-

ment [38.57, 97], and on an autonomous rolling robot
that only uses simple sensors and a microcontroller to
generate purposeful movements used in a study regard-
ing interaction with toddlers [38.106, 107]. The MBA
architecture is now being used on robots with increas-
ing perceptual and action capabilities, in an attempt to
provide robots with the necessary skills to be useful and
efficient in daily life.

38.7 Conclusions and Further Reading

This chapter has described behavior-based control,
a methodology for single- and multi-robot control
aimed at situated robots operating in unconstrained,
challenging, and dynamic conditions in the real
world. While inspired by the philosophy of react-
ive control, behavior-based systems are fundamentally
more expressive and powerful, enabling representa-
tion, planning, and learning capabilities. Distributed

behaviors are used as the underlying building blocks
for these capabilities, allowing behavior-based systems
to take advantage of dynamic interactions with the
environment rather than rely solely on explicit rea-
soning and planning. As the complexity of robots
continues to increase, behavior-based principles and
their applications in robot architectures and de-
ployed systems will evolve as well, demonstrating
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increasingly higher levels of situated intelligence and
autonomy.

Interested readers can find more information regard-
ing behavior-based systems in other chapters of this

Handbook, as well as in Brooks [38.108], Arkin [38.22],
in artificial intelligence and robotics textbooks [38.109,
110], and in introductory textbooks on mobile robot
control [38.111–113].
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